76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mating Competence of Geographically Diverse Leishmania major Strains in Their Natural and Unnatural Sand Fly Vectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Invertebrate stages of Leishmania are capable of genetic exchange during their extracellular growth and development in the sand fly vector. Here we explore two variables: the ability of diverse L. major strains from across its natural range to undergo mating in pairwise tests; and the timing of the appearance of hybrids and their developmental stage associations within both natural ( Phlebotomus duboscqi) and unnatural ( Lutzomyia longipalpis) sand fly vectors. Following co-infection of flies with parental lines bearing independent drug markers, doubly-drug resistant hybrid progeny were selected, from which 96 clonal lines were analyzed for DNA content and genotyped for parent alleles at 4–6 unlinked nuclear loci as well as the maxicircle DNA. As seen previously, the majority of hybrids showed ‘2n’ DNA contents, but with a significant number of ‘3n’ and one ‘4n’ offspring. In the natural vector, 97% of the nuclear loci showed both parental alleles; however, 3% (4/150) showed only one parental allele. In the unnatural vector, the frequency of uniparental inheritance rose to 10% (27/275). We attribute this to loss of heterozygosity after mating, most likely arising from aneuploidy which is both common and temporally variable in Leishmania. As seen previously, only uniparental inheritance of maxicircle kDNA was observed. Hybrids were recovered at similar efficiencies in all pairwise crosses tested, suggesting that L. major lacks detectable ‘mating types’ that limit free genetic exchange. In the natural vector, comparisons of the timing of hybrid formation with the presence of developmental stages suggest nectomonads as the most likely sexually competent stage, with hybrids emerging well before the first appearance of metacyclic promastigotes. These studies provide an important perspective on the prevalence of genetic exchange in natural populations of L. major and a guide for experimental studies to understand the biology of mating.

          Author Summary

          Leishmania are pathogenic protozoa characterized by substantial diversity in the sand fly species that can transmit them, in the mammalian species that can serve as their reservoir hosts, and in the disease forms and severity of the clinical outcomes they can produce in humans. The possibility that this diversity has arisen, at least in part, by a process involving genetic exchange was recently given experimental support by the recovery of hybrid parasites from sand flies co-infected with two strains of Leishmania major. Here, we demonstrate the sexual competency of L. major strains originating across the full geographic range of this parasite species, and in both natural and unnatural sand fly vectors. Our genotype analyses of a large number of hybrid clones confirmed that they inherited both parental alleles at the majority of chromosomal marker loci analyzed, consistent with a meiotic process, while kinetoplast DNA was inherited from only one parent. Surprisingly, a few nuclear loci were sometimes inherited from only one parent, suggesting loss of heterozygosity. The early timing of hybrid recovery suggests that nectomonad promastigotes are the most likely mating competent stage of the parasite. These studies provide the strongest evidence to date that sex is a component of the natural reproductive strategy of L. major.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy.

          Leishmaniasis is a geographically widespread severe disease, with an increasing incidence of two million cases per year and 350 million people from 88 countries at risk. The causative agents are species of Leishmania, a protozoan flagellate. Visceral leishmaniasis, the most severe form of the disease, lethal if untreated, is caused by species of the Leishmania donovani complex. These species are morphologically indistinguishable but have been identified by molecular methods, predominantly multilocus enzyme electrophoresis. We have conducted a multifactorial genetic analysis that includes DNA sequences of protein-coding genes as well as noncoding segments, microsatellites, restriction-fragment length polymorphisms, and randomly amplified polymorphic DNAs, for a total of approximately 18,000 characters for each of 25 geographically representative strains. Genotype is strongly correlated with geographical (continental) origin, but not with current taxonomy or clinical outcome. We propose a new taxonomy, in which Leishmania infantum and L. donovani are the only recognized species of the L. donovani complex, and we present an evolutionary hypothesis for the origin and dispersal of the species. The genus Leishmania may have originated in South America, but diversified after migration into Asia. L. donovani and L. infantum diverged approximately 1 Mya, with further divergence of infraspecific genetic groups between 0.4 and 0.8 Mya. The prevailing mode of reproduction is clonal, but there is evidence of genetic exchange between strains, particularly in Africa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector.

            Genetic exchange has not been shown to be a mechanism underlying the extensive diversity of Leishmania parasites. We report here evidence that the invertebrate stages of Leishmania are capable of having a sexual cycle consistent with a meiotic process like that described for African trypanosomes. Hybrid progeny were generated that bore full genomic complements from both parents, but kinetoplast DNA maxicircles from one parent. Mating occurred only in the sand fly vector, and hybrids were transmitted to the mammalian host by sand fly bite. Genetic exchange likely contributes to phenotypic diversity in natural populations, and analysis of hybrid progeny will be useful for positional cloning of the genes controlling traits such as virulence, tissue tropism, and drug resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of genetic exchange in American trypanosomes.

              The kinetoplastid Protozoa are responsible for devastating diseases. In the Americas, Trypanosoma cruzi is the agent of Chagas' disease--a widespread disease transmissible from animals to humans (zoonosis)--which is transmitted by exposure to infected faeces of blood-sucking triatomine bugs. The presence of genetic exchange in T. cruzi and in Leishmania is much debated. Here, by producing hybrid clones, we show that T. cruzi has an extant capacity for genetic exchange. The mechanism is unusual and distinct from that proposed for the African trypanosome, Trypanosoma brucei. Two biological clones of T. cruzi were transfected to carry different drug-resistance markers, and were passaged together through the entire life cycle. Six double-drug-resistant progeny clones, recovered from the mammalian stage of the life cycle, show fusion of parental genotypes, loss of alleles, homologous recombination, and uniparental inheritance of kinetoplast maxicircle DNA. There are strong genetic parallels between these experimental hybrids and the genotypes among natural isolates of T. cruzi. In this instance, aneuploidy through nuclear hybridization results in recombination across far greater genetic distances than mendelian genetic exchange. This mechanism also parallels genome duplication.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2013
                July 2013
                25 July 2013
                : 9
                : 7
                : e1003672
                Affiliations
                [1 ]Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [3 ]Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
                Duke University Medical Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EI NSA DAE MB MG DED SMB DS. Performed the experiments: EI NSA MC AR PL DAE FK MB KO DED JS SMB DS. Analyzed the data: EI DAE MG MF JS SMB DS. Contributed reagents/materials/analysis tools: MF. Wrote the paper: EI SMB DS.

                Article
                PGENETICS-D-13-00771
                10.1371/journal.pgen.1003672
                3723561
                23935521
                31e0b299-ad12-49ff-aac1-6a7d05b95253
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 25 March 2013
                : 11 June 2013
                Page count
                Pages: 14
                Funding
                This work was supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and by NIH grant AI-RO129646 (SMB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Medicine

                Genetics
                Genetics

                Comments

                Comment on this article