30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transcription factors and 3D genome conformation in cell-fate decisions

      , ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Transcription factors: from enhancer binding to developmental control.

          Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A map of the cis-regulatory sequences in the mouse genome.

            The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 10(9) bases of the mouse genome possess a high degree of conservation with the human genome, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Architectural protein subclasses shape 3D organization of genomes during lineage commitment.

              Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here, we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3D interactions that undergo marked reorganization at the submegabase scale during differentiation. Distinct combinations of CCCTC-binding factor (CTCF), Mediator, and cohesin show widespread enrichment in chromatin interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that might form the topological basis for invariant subdomains. Conversely, Mediator/cohesin bridge short-range enhancer-promoter interactions within and between larger subdomains. Knockdown of Smc1 or Med12 in embryonic stem cells results in disruption of spatial architecture and downregulation of genes found in cohesin-mediated interactions. We conclude that cell-type-specific chromatin organization occurs at the submegabase scale and that architectural proteins shape the genome in hierarchical length scales. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                May 2019
                May 15 2019
                May 2019
                : 569
                : 7756
                : 345-354
                Article
                10.1038/s41586-019-1182-7
                31092938
                32f63da3-2e63-4003-89c6-69fe01f2a59e
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article