4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microfluidic technologies for circulating tumor cells: from enrichment to single-cell analysis to liquid biopsy for clinical applications.

          Abstract

          Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.

          Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together. Drop-seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts' cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. VIDEO ABSTRACT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer.

            A method for enumerating circulating tumor cells (CTC) has received regulatory clearance. The primary objective of this prospective study was to establish the relationship between posttreatment CTC count and overall survival (OS) in castration-resistant prostate cancer (CRPC). Secondary objectives included determining the prognostic utility of CTC measurement before initiating therapy, and the relationship of CTC to prostate-specific antigen (PSA) changes and OS at these and other time points. Blood was drawn from CRPC patients with progressive disease starting a new line of chemotherapy before treatment and monthly thereafter. Patients were stratified into predetermined Favorable or Unfavorable groups ( or =5 CTC/7.5mL). Two hundred thirty-one of 276 enrolled patients (84%) were evaluable. Patients with Unfavorable pretreatment CTC (57%) had shorter OS (median OS, 11.5 versus 21.7 months; Cox hazard ratio, 3.3; P 26 to 9.3 months). CTC are the most accurate and independent predictor of OS in CRPC. These data led to Food and Drug Administration clearance of this assay for the evaluation of CRPC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.

              It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT.
                Bookmark

                Author and article information

                Contributors
                Journal
                LCAHAM
                Lab on a Chip
                Lab Chip
                Royal Society of Chemistry (RSC)
                1473-0197
                1473-0189
                October 27 2020
                2020
                : 20
                : 21
                : 3854-3875
                Affiliations
                [1 ]College of Chemistry
                [2 ]Chemical Engineering and Materials Science
                [3 ]Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
                [4 ]Key Laboratory of Molecular and Nano Probes
                [5 ]Ministry of Education
                [6 ]The First Affiliated Hospital of Shandong First Medical University
                [7 ]Jinan
                [8 ]P. R. China
                Article
                10.1039/D0LC00577K
                33107879
                34cb88d1-5c2b-4ac1-8f53-b43ea14ee611
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article