12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics, such as on-chip optical interconnects, and silicon photonics. However, conventional light sources based on compound semiconductors face major challenges for their integration with a silicon-based platform because of their difficulty of direct growth on a silicon substrate. Here we report ultra-high-speed (100-ps response time), highly integrated graphene-based on-silicon-chip blackbody emitters in the near-infrared region including telecommunication wavelength. Their emission responses are strongly affected by the graphene contact with the substrate depending on the number of graphene layers. The ultra-high-speed emission can be understood by remote quantum thermal transport via surface polar phonons of the substrates. We demonstrated real-time optical communications, integrated two-dimensional array emitters, capped emitters operable in air, and the direct coupling of optical fibers to the emitters. These emitters can open new routes to on-Si-chip, small footprint, and high-speed emitters for highly integrated optoelectronics and silicon photonics.

          Abstract

          Integrating graphene with existing silicon technologies may pave the way to compact light sources for optoelectronics and photonics. Here, the authors fabricate graphene-based arrays of blackbody emitters integrated on a silicon chip, operating in the near-infrared region at high speed.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Two-Dimensional Gas of Massless Dirac Fermions in Graphene

          Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective "speed of light" c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; b) graphene's conductivity never falls below a minimum value corresponding to the conductance quantum e^2/h, even when carrier concentrations tend to zero; c) the cyclotron mass m of massless carriers with energy E in graphene is described by equation E =mc*^2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of pi due to Berry's phase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene

            We show that the optical transparency of suspended graphene is defined by the fine structure constant, alpha, the parameter that describes coupling between light and relativistic electrons and is traditionally associated with quantum electrodynamics rather than condensed matter physics. Despite being only one atom thick, graphene is found to absorb a significant (pi times alpha=2.3%) fraction of incident white light, which is a consequence of graphene's unique electronic structure. This value translates into universal dynamic conductivity G =e^2/4h_bar within a few percent accuracy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2

              The linear dispersion relation in graphene[1,2] gives rise to a surprising prediction: the resistivity due to isotropic scatterers (e.g. white-noise disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show that acoustic phonon scattering[4-6] is indeed independent of n, and places an intrinsic limit on the resistivity in graphene of only 30 Ohm at room temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2, the mean free path for electron-acoustic phonon scattering is >2 microns, and the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by surface phonons of the SiO2 substrate[11,12] adds a strong temperature dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4 cm^2/Vs, pointing out the importance of substrate choice for graphene devices[13].
                Bookmark

                Author and article information

                Contributors
                maki@appi.keio.ac.jp
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                29 March 2018
                29 March 2018
                2018
                : 9
                : 1279
                Affiliations
                [1 ]ISNI 0000 0004 1936 9959, GRID grid.26091.3c, Department of Applied Physics and Physico-Informatics, , Keio University, ; Yokohama, 223-8522 Japan
                [2 ]ISNI 0000 0001 0728 696X, GRID grid.1957.a, Faculty of Electrical Engineering and Information Technology, , RWTH Aachen University, ; 52074 Aachen, Germany
                [3 ]ISNI 0000 0001 2242 4849, GRID grid.177174.3, Global Innovation Center (GIC), , Kyushu University, ; Fukuoka, 816-8580 Japan
                [4 ]ISNI 0000 0004 1754 9200, GRID grid.419082.6, PRESTO, , JST, ; 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
                Article
                3695
                10.1038/s41467-018-03695-x
                5876377
                29599460
                35636c55-a0b7-4fa4-88a0-0f6da9cfe9e3
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 September 2017
                : 6 March 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article