0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Between Innate and Adaptive Immune Responses: NKG2A, NKG2C, and CD8 + T Cell Recognition of HLA-E Restricted Self-Peptides Acquired in the Absence of HLA-Ia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On healthy cells the non-classical HLA class Ib molecule HLA-E displays the cognate ligand for the NK cell receptor NKG2A/CD94 when bound to HLA class I signal peptide sequences. In a pathogenic situation when HLA class I is absent, HLA-E is bound to a diverse set of peptides and enables the stimulatory NKG2C/CD94 receptor to bind. The activation of CD8 + T cells by certain p:HLA-E complexes illustrates the dual role of this low polymorphic HLA molecule in innate and adaptive immunity. Recent studies revealed a shift in the HLA-E peptide repertoire in cells with defects in the peptide loading complex machinery. We recently showed that HLA-E presents a highly diverse set of peptides in the absence of HLA class Ia and revealed a non-protective feature against NK cell cytotoxicity mediated by these peptides. In the present study we have evaluated the molecular basis for the impaired NK cell inhibition by these peptides and determined the cell surface stability of individual p:HLA-E complexes and their binding efficiency to soluble NKG2A/CD94 or NKG2C/CD94 receptors. Additionally, we analyzed the recognition of these p:HLA-E epitopes by CD8 + T cells. We show that non-canonical peptides provide stable cell surface expression of HLA-E, and these p:HLA-E complexes still bind to NKG2/CD94 receptors in a peptide-restricted fashion. Furthermore, individual p:HLA-E complexes elicit activation of CD8 + T cells with an effector memory phenotype. These novel HLA-E epitopes provide new implications for therapies targeting cells with abnormal HLA class I expression.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Up on the tightrope: natural killer cell activation and inhibition.

          Natural killer (NK) cells circulate through the blood, lymphatics and tissues, on patrol for the presence of transformed or pathogen-infected cells. As almost all NK cell receptors bind to host-encoded ligands, signals are constantly being transmitted into NK cells, whether they interact with normal or abnormal cells. The sophisticated repertoire of activating and inhibitory receptors that has evolved to regulate NK cell activity ensures that NK cells protect hosts against pathogens, yet prevents deleterious NK cell-driven autoimmune responses. Here I highlight recent advances in our understanding of the structural properties and signaling pathways of the inhibitory and activating NK cell receptors, with a particular focus on the ITAM-dependent activating receptors, the NKG2D-DAP10 receptor complexes and the CD244 receptor system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

            The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector.

              Attempts to generate reliable and versatile vectors for gene therapy and biomedical research that express multiple genes have met with limited success. Here we used Picornavirus 'self-cleaving' 2A peptides, or 2A-like sequences from other viruses, to generate multicistronic retroviral vectors with efficient translation of four cistrons. Using the T-cell receptor:CD3 complex as a test system, we show that a single 2A peptide-linked retroviral vector can be used to generate all four CD3 proteins (CD3epsilon, gamma, delta, zeta), and restore T-cell development and function in CD3-deficient mice. We also show complete 2A peptide-mediated 'cleavage' and stoichiometric production of two fluorescent proteins using a fluorescence resonance energy transfer-based system in multiple cell types including blood, thymus, spleen, bone marrow and early stem cell progenitors.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 March 2019
                March 2019
                : 20
                : 6
                : 1454
                Affiliations
                [1 ]Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625 Hannover, Germany; Abels.Wiebke@ 123456mh-hannover.de (W.C.P.); th.kraemer1@ 123456gmail.com (T.K.); Ho.Gia-Gia@ 123456mh-hannover.de (G.-G.T.H.); blasczyk.rainer@ 123456mh-hannover.de (R.B.)
                [2 ]Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; trevor.huyton@ 123456mpibpc.mpg.de
                Author notes
                [* ]Correspondence: bade-doeding.christina@ 123456mh-hannover.de ; Tel.: +49-511-532-9744; Fax: +49-511-532-2079
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-5826-1989
                Article
                ijms-20-01454
                10.3390/ijms20061454
                6471057
                30909402
                3585c307-9f8f-438d-baf6-831215b4738f
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 January 2019
                : 19 March 2019
                Categories
                Article

                Molecular biology
                immune evasion hcmv,nkg2a/cd94,nkg2c/cd94,hla-e peptide ligands
                Molecular biology
                immune evasion hcmv, nkg2a/cd94, nkg2c/cd94, hla-e peptide ligands

                Comments

                Comment on this article