46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits

      research-article
      1 , 1 , 2 , 1 ,
      BMC Genomics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Selection for increasing intramuscular fat content would definitively improve the palatability and juiciness of pig meat as well as the sensorial and organoleptic properties of cured products. However, evidences obtained in human and model organisms suggest that high levels of intramuscular fat might alter muscle lipid and carbohydrate metabolism. We have analysed this issue by determining the transcriptomic profiles of Duroc pigs with divergent phenotypes for 13 fatness traits. The strong aptitude of Duroc pigs to have high levels of intramuscular fat makes them a valuable model to analyse the mechanisms that regulate muscle lipid metabolism, an issue with evident implications in the elucidation of the genetic basis of human metabolic diseases such as obesity and insulin resistance.

          Results

          Muscle gene expression profiles of 68 Duroc pigs belonging to two groups (HIGH and LOW) with extreme phenotypes for lipid deposition and composition traits have been analysed. Microarray and quantitative PCR analysis showed that genes related to fatty acid uptake, lipogenesis and triacylglycerol synthesis were upregulated in the muscle tissue of HIGH pigs, which are fatter and have higher amounts of intramuscular fat than their LOW counterparts. Paradoxically, lipolytic genes also showed increased mRNA levels in the HIGH group suggesting the existence of a cycle where triacylglycerols are continuously synthesized and degraded. Several genes related to the insulin-signalling pathway, that is usually impaired in obese humans, were also upregulated. Finally, genes related to antigen-processing and presentation were downregulated in the HIGH group.

          Conclusion

          Our data suggest that selection for increasing intramuscular fat content in pigs would lead to a shift but not a disruption of the metabolic homeostasis of muscle cells. Future studies on the post-translational changes affecting protein activity or expression as well as information about protein location within the cell would be needed to to elucidate the effects of lipid deposition on muscle metabolism in pigs.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis.

          The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis.

            Quality Control is a fundamental aspect of successful microarray data analysis. Simpleaffy is a BioConductor package that provides access to a variety of QC metrics for assessing the quality of RNA samples and of the intermediate stages of sample preparation and hybridization. Simpleaffy also offers fast implementations of popular algorithms for generating expression summaries and detection calls. Simpleaffy can be downloaded from http://www.bioconductor.org. Additional information can be found on the supplementary website located at http://bioinformatics.picr.man.ac.uk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of DNA microarray results with quantitative gene expression platforms.

              We have evaluated the performance characteristics of three quantitative gene expression technologies and correlated their expression measurements to those of five commercial microarray platforms, based on the MicroArray Quality Control (MAQC) data set. The limit of detection, assay range, precision, accuracy and fold-change correlations were assessed for 997 TaqMan Gene Expression Assays, 205 Standardized RT (Sta)RT-PCR assays and 244 QuantiGene assays. TaqMan is a registered trademark of Roche Molecular Systems, Inc. We observed high correlation between quantitative gene expression values and microarray platform results and found few discordant measurements among all platforms. The main cause of variability was differences in probe sequence and thus target location. A second source of variability was the limited and variable sensitivity of the different microarray platforms for detecting weakly expressed genes, which affected interplatform and intersite reproducibility of differentially expressed genes. From this analysis, we conclude that the MAQC microarray data set has been validated by alternative quantitative gene expression platforms thus supporting the use of microarray platforms for the quantitative characterization of gene expression.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2010
                11 June 2010
                : 11
                : 372
                Affiliations
                [1 ]IRTA, Genètica i Millora Animal, 191 Av Alcalde Rovira Roure, 25198 Lleida, Spain
                [2 ]Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
                Article
                1471-2164-11-372
                10.1186/1471-2164-11-372
                2894043
                20540717
                35953c41-46fc-404d-b154-c857ff761862
                Copyright ©2010 Cánovas et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 December 2009
                : 11 June 2010
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article