6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is a primary liver malignancy with a high global prevalence and a dismal prognosis. Studies are urgently needed to examine the molecular pathogenesis and biological characteristics of HCC. Chromatin remodelling, an integral component of the DNA damage response, protects against DNA damage‐induced genome instability and tumorigenesis by triggering the signalling events that activate the interconnected DNA repair pathways. The SWI/SNF complexes are one of the most extensively investigated adenosine triphosphate‐dependent chromatin remodelling complexes, and mutations in genes encoding SWI/SNF subunits are frequently observed in various human cancers, including HCC. The mutated SWI/SNF complex subunits exert dual functions by accelerating or inhibiting HCC initiation and progression. Furthermore, the abnormal SWI/SNF complexes influence the transcription of interferon‐stimulated genes, as well as the differentiation, activation and recruitment of several immune cell types. In addition, they exhibit synergistic effects with immune checkpoint inhibitors in the treatment of diverse tumour types. Therefore, understanding the mutations and deficiencies of the SMI/SNF complexes, together with the associated functional mechanisms, may provide a novel strategy to treat HCC through targeting the related genes or modulating the tumour microenvironment.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          A unique chromatin signature uncovers early developmental enhancers in humans.

          Cell-fate transitions involve the integration of genomic information encoded by regulatory elements, such as enhancers, with the cellular environment. However, identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs), unique chromatin signatures identify two distinct classes of genomic elements, both of which are marked by the presence of chromatin regulators p300 and BRG1, monomethylation of histone H3 at lysine 4 (H3K4me1), and low nucleosomal density. In addition, elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac), overlap with previously characterized hESC enhancers, and are located proximally to genes expressed in hESCs and the epiblast. In contrast, elements of the second class, which we term 'poised enhancers', are distinguished by the absence of H3K27ac, enrichment of histone H3 lysine 27 trimethylation (H3K27me3), and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis, such as gastrulation, mesoderm formation and neurulation. Consistent with the poised identity, during differentiation of hESCs to neuroepithelium, a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos, poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene, even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover, the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient, rare cell populations representing early stages of human embryogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromatin remodelling during development.

            New methods for the genome-wide analysis of chromatin are providing insight into its roles in development and their underlying mechanisms. Current studies indicate that chromatin is dynamic, with its structure and its histone modifications undergoing global changes during transitions in development and in response to extracellular cues. In addition to DNA methylation and histone modification, ATP-dependent enzymes that remodel chromatin are important controllers of chromatin structure and assembly, and are major contributors to the dynamic nature of chromatin. Evidence is emerging that these chromatin-remodelling enzymes have instructive and programmatic roles during development. Particularly intriguing are the findings that specialized assemblies of ATP-dependent remodellers are essential for establishing and maintaining pluripotent and multipotent states in cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade

              ARID1A (the AT-rich interaction domain 1A, also known as BAF250a) is one of the most commonly mutated genes in cancer1,2. The majority of ARID1A mutations are inactivating mutations and lead to loss of ARID1A expression 3 , which makes ARID1A a poor therapeutic target. Therefore, it is of clinical importance to identify molecular consequences of ARID1A deficiency that create therapeutic vulnerabilities in ARID1A-mutant tumors. In a proteomic screen, we found that ARID1A interacts with mismatch repair (MMR) protein MSH2. ARID1A recruited MSH2 to chromatin during DNA replication and promoted MMR. Conversely, ARID1A inactivation compromised MMR and increased mutagenesis. ARID1A deficiency correlated with microsatellite instability genomic signature and a predominant C>T mutation pattern and increased mutation load across multiple human cancer types. Tumors formed by an ARID1A-deficient ovarian cancer cell line in syngeneic mice displayed increased mutation load, elevated numbers of tumor-infiltrating lymphocytes, and PD-L1 expression. Notably, treatment with anti-PD-L1 antibody reduced tumor burden and prolonged survival of mice bearing ARID1A-deficient but not ARID1A-wild-type ovarian tumors. Together, these results suggest ARID1A deficiency contributes to impaired MMR and mutator phenotype in cancer, and may cooperate with immune checkpoint blockade therapy.
                Bookmark

                Author and article information

                Contributors
                sangxt@pumch.cn
                Journal
                Cell Prolif
                Cell Prolif
                10.1111/(ISSN)1365-2184
                CPR
                Cell Proliferation
                John Wiley and Sons Inc. (Hoboken )
                0960-7722
                1365-2184
                11 March 2020
                April 2020
                : 53
                : 4 ( doiID: 10.1111/cpr.v53.4 )
                : e12791
                Affiliations
                [ 1 ] Department of Liver Surgery Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
                Author notes
                [*] [* ] Correspondence

                Xin‐Ting Sang, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing 100730, China.

                Email: sangxt@ 123456pumch.cn

                Author information
                https://orcid.org/0000-0003-1952-0527
                Article
                CPR12791
                10.1111/cpr.12791
                7162795
                32162380
                36229605-2391-44d8-982c-fb71c63b3721
                © 2020 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 November 2019
                : 13 February 2020
                : 22 February 2020
                Page count
                Figures: 5, Tables: 2, Pages: 15, Words: 11183
                Categories
                Review
                Review
                Custom metadata
                2.0
                April 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:16.04.2020

                Cell biology
                chromatin remodelling,hepatocellular carcinoma,immunotherapy,swi/snf complex,tumour suppressor gene

                Comments

                Comment on this article