25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most mitochondrial preproteins are maintained in a loosely folded import-competent conformation by cytosolic chaperones, and are imported into mitochondria by translocator complexes containing a preprotein receptor, termed translocase of the outer membrane of mitochondria (Tom) 20. Using two-hybrid screening, we identified arylhydrocarbon receptor–interacting protein (AIP), an FK506-binding protein homologue, interacting with Tom20. The extreme COOH-terminal acidic segment of Tom20 was required for interaction with tetratricopeptide repeats of AIP. An in vitro import assay indicated that AIP prevents preornithine transcarbamylase from the loss of import competency. In cultured cells, overexpression of AIP enhanced preornithine transcarbamylase import, and depletion of AIP by RNA interference impaired the import. An in vitro binding assay revealed that AIP specifically binds to mitochondrial preproteins. Formation of a ternary complex of Tom20, AIP, and preprotein was observed. Hsc70 was also found to bind to AIP. An aggregation suppression assay indicated that AIP has a chaperone-like activity to prevent substrate proteins from aggregation. These results suggest that AIP functions as a cytosolic factor that mediates preprotein import into mitochondria.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Protein import into mitochondria.

          W Neupert (1996)
          Mitochondria import many hundreds of different proteins that are encoded by nuclear genes. These proteins are targeted to the mitochondria, translocated through the mitochondrial membranes, and sorted to the different mitochondrial subcompartments. Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes. Factors in the cytosol assist in targeting of preproteins. Protein components in the matrix partake in energetically driving translocation in a reaction that depends on the membrane potential and matrix-ATP. Molecular chaperones in the matrix exert multiple functions in translocation, sorting, folding, and assembly of newly imported proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity.

            Prior to ligand activation, the unactivated aryl hydrocarbon receptor (AhR) exists in a heterotetrameric 9S core complex consisting of the AhR ligand-binding subunit, a dimer of hsp90, and an unknown subunit. Here we report the purification of an approximately 38-kDa protein (p38) from COS-1 cell cytosol that is a member of this complex by coprecipitation with a FLAG-tagged AhR. Internal amino acid sequence information was obtained, and p38 was identified as the hepatitis B virus X-associated protein 2 (XAP2). The simian ortholog of XAP2 was cloned from a COS-1 cDNA library; it codes for a 330-amino-acid protein containing regions of homology to the immunophilins FKBP12 and FKBP52. A tetratricopeptide repeat (TPR) domain in the carboxy-terminal region of XAP2 was similar to the third and fourth TPR domains of human FKBP52 and the Saccharomyces cerevisiae transcriptional modulator SSN6, respectively. Polyclonal antibodies raised against XAP2 recognized p38 in the unliganded AhR complex in COS-1 and Hepa 1c1c7 cells. It was ubiquitously expressed in murine tissues at the protein and mRNA levels. It was not required for the assembly of an AhR-hsp90 complex in vitro. Additionally, XAP2 did not directly associate with hsp90 upon in vitro translation, but was present in a 9S form when cotranslated in vitro with murine AhR. XAP2 enhanced the ability of endogenous murine and human AhR complexes to activate a dioxin-responsive element-luciferase reporter twofold, following transient expression of XAP2 in Hepa 1c1c7 and HeLa cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

              To identify new proteins involved in dioxin-dependent signal transduction and transcriptional regulation, we used a yeast two-hybrid system to identify proteins that interact with the Ah receptor (AhR). We cloned a mouse cDNA, which encodes a novel approximately 37-kDa protein that binds to AhR; we have designated the protein as Ah receptor-interacting protein (AIP). The amino acid sequence of mouse AIP exhibits homology with members of the FK506-binding protein family. AIP also contains three tetratricopeptide repeat (TPR) motifs; the TPR sequence is present in proteins required for cell cycle control and RNA synthesis and in steroid receptor-binding immunophilins. Coimmunoprecipitation experiments in mouse hepatoma cells reveal that AIP is cytoplasmic and associates with unliganded Ah receptor and with hsp90; 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment disrupts the AhR-AIP-hsp90 interaction. Overexpression of AIP augments the response of the CYP1A1 gene to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Our data suggest that AIP influences ligand receptivity and/or nuclear targeting of AhR.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                13 October 2003
                : 163
                : 1
                : 45-56
                Affiliations
                Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
                Author notes

                Address correspondence to Masato Yano, Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan. Tel.: 81-96-373-5140. Fax: 81-96-373-5145. email: myano@ 123456gpo.kumamoto-u.ac.jp ; or Masataka Mori, Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan. Tel.: 81-96-373-5140. Fax: 81-96-373-5145. email: masa@ 123456gpo.kumamoto-u.ac.jp

                Article
                200305051
                10.1083/jcb.200305051
                2173431
                14557246
                3702c928-76a5-44e2-abec-5762d7014832
                Copyright © 2003, The Rockefeller University Press
                History
                : 12 May 2003
                : 25 August 2003
                Categories
                Article

                Cell biology
                chaperone; import competency; protein targeting; mitochondria; tom20
                Cell biology
                chaperone; import competency; protein targeting; mitochondria; tom20

                Comments

                Comment on this article