27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain mechanisms associated with internally directed attention and self-generated thought

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed “in the mind’s eye”. The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Searching for a baseline: functional imaging and the resting human brain.

          Functional brain imaging in humans has revealed task-specific increases in brain activity that are associated with various mental activities. In the same studies, mysterious, task-independent decreases have also frequently been encountered, especially when the tasks of interest have been compared with a passive state, such as simple fixation or eyes closed. These decreases have raised the possibility that there might be a baseline or resting state of brain function involving a specific set of mental operations. We explore this possibility, including the manner in which we might define a baseline and the implications of such a baseline for our understanding of brain function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for a frontoparietal control system revealed by intrinsic functional connectivity.

            Two functionally distinct, and potentially competing, brain networks have been recently identified that can be broadly distinguished by their contrasting roles in attention to the external world versus internally directed mentation involving long-term memory. At the core of these two networks are the dorsal attention system and the hippocampal-cortical memory system, a component of the brain's default network. Here spontaneous blood-oxygenation-level-dependent (BOLD) signal correlations were used in three separate functional magnetic resonance imaging data sets (n = 105) to define a third system, the frontoparietal control system, which is spatially interposed between these two previously defined systems. The frontoparietal control system includes many regions identified as supporting cognitive control and decision-making processes including lateral prefrontal cortex, anterior cingulate cortex, and inferior parietal lobule. Detailed analysis of frontal and parietal cortex, including use of high-resolution data, revealed clear evidence for contiguous but distinct regions: in general, the regions associated with the frontoparietal control system are situated between components of the dorsal attention and hippocampal-cortical memory systems. The frontoparietal control system is therefore anatomically positioned to integrate information from these two opposing brain systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Remembering the past to imagine the future: the prospective brain.

              A rapidly growing number of recent studies show that imagining the future depends on much of the same neural machinery that is needed for remembering the past. These findings have led to the concept of the prospective brain; an idea that a crucial function of the brain is to use stored information to imagine, simulate and predict possible future events. We suggest that processes such as memory can be productively re-conceptualized in light of this idea.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                10 March 2016
                2016
                : 6
                : 22959
                Affiliations
                [1 ]Department of Psychology, University of Graz, Austria, BioTechMed-Graz
                [2 ]Department of Psychology, University of North Carolina at Greensboro, USA.
                Author notes
                Article
                srep22959
                10.1038/srep22959
                4785374
                26960259
                37662516-80d0-4ae6-b5fc-b9ccf4edd39c
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 October 2015
                : 17 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article