3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary cilia play counterregulatory roles in cystogenesis—they inhibit cyst formation in the normal renal tubule but promote cyst growth when the function of polycystins is impaired. Key upstream cilia-specific signals and components involved in driving cystogenesis have remained elusive. Recent studies of the tubby family protein, Tubby-like protein 3 (TULP3), have provided new insights into the cilia-localized mechanisms that determine cyst growth. TULP3 is a key adapter of the intraflagellar transport complex A (IFT-A) in the trafficking of multiple proteins specifically into the ciliary membrane. Loss of TULP3 results in the selective exclusion of its cargoes from cilia without affecting their extraciliary pools and without disrupting cilia or IFT-A complex integrity. Epistasis analyses have indicated that TULP3 inhibits cystogenesis independently of the polycystins during kidney development but promotes cystogenesis in adults when polycystins are lacking. In this review, we discuss the current model of the cilia-dependent cyst activation (CDCA) mechanism in autosomal dominant polycystic kidney disease (ADPKD) and consider the possible roles of ciliary and extraciliary polycystins in regulating CDCA. We then describe the limitations of this model in not fully accounting for how cilia single knockouts cause significant cystic changes either in the presence or absence of polycystins. Based on available data from TULP3/IFT-A-mediated differential regulation of cystogenesis in kidneys with deletion of polycystins either during development or in adulthood, we hypothesize the existence of cilia-localized components of CDCA (cCDCA) and cilia-localized cyst inhibition (CLCI) signals. We develop the criteria for cCDCA/CLCI signals and discuss potential TULP3 cargoes as possible cilia-localized components that determine cystogenesis in kidneys during development and in adult mice.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Patched1 regulates hedgehog signaling at the primary cilium.

          Primary cilia are essential for transduction of the Hedgehog (Hh) signal in mammals. We investigated the role of primary cilia in regulation of Patched1 (Ptc1), the receptor for Sonic Hedgehog (Shh). Ptc1 localized to cilia and inhibited Smoothened (Smo) by preventing its accumulation within cilia. When Shh bound to Ptc1, Ptc1 left the cilia, leading to accumulation of Smo and activation of signaling. Thus, primary cilia sense Shh and transduce signals that play critical roles in development, carcinogenesis, and stem cell function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and proteomic profiling of exosomes in human urine.

            Urine provides an alternative to blood plasma as a potential source of disease biomarkers. One urinary biomarker already exploited in clinical studies is aquaporin-2. However, it remains a mystery how aquaporin-2 (an integral membrane protein) and other apical transporters are delivered to the urine. Here we address the hypothesis that these proteins reach the urine through the secretion of exosomes [membrane vesicles that originate as internal vesicles of multivesicular bodies (MVBs)]. Low-density urinary membrane vesicles from normal human subjects were isolated by differential centrifugation. ImmunoGold electron microscopy using antibodies directed to cytoplasmic or anticytoplasmic epitopes revealed that the vesicles are oriented "cytoplasmic-side inward," consistent with the unique orientation of exosomes. The vesicles were small (<100 nm), consistent with studies of MVBs and exosomes from other tissues. Proteomic analysis of urinary vesicles through nanospray liquid chromatography-tandem mass spectrometry identified numerous protein components of MVBs and of the endosomal pathway in general. Full liquid chromatography-tandem MS analysis revealed 295 proteins, including multiple protein products of genes already known to be responsible for renal and systemic diseases, including autosomal dominant polycystic kidney disease, Gitelman syndrome, Bartter syndrome, autosomal recessive syndrome of osteopetrosis with renal tubular acidosis, and familial renal hypomagnesemia. The results indicate that exosome isolation may provide an efficient first step in biomarker discovery in urine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular signalling by primary cilia in development, organ function and disease

              Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this review we highlight central mechanisms by which primary cilia coordinate HH, G-protein-coupled receptor, WNT, receptor tyrosine kinase and TGFβ/BMP signalling, and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Biosci
                Front Mol Biosci
                Front. Mol. Biosci.
                Frontiers in Molecular Biosciences
                Frontiers Media S.A.
                2296-889X
                23 June 2022
                2022
                : 9
                : 936070
                Affiliations
                [1] 1 Division of Nephrology , Department of Medicine , University of Maryland School of Medicine , Baltimore, MD, United States
                [2] 2 Department of Cell Biology , UT Southwestern Medical Center , Dallas, TX, United States
                Author notes

                Edited by: Annarita Di Mise, University of Bari Aldo Moro, Italy

                Reviewed by: Jong Hoon Park, Sookmyung Women’s University, South Korea

                Miriam Zacchia, University of Campania Luigi Vanvitelli, Italy

                *Correspondence: Feng Qian, fqian@ 123456som.umaryland.edu

                This article was submitted to Molecular Diagnostics and Therapeutics, a section of the journal Frontiers in Molecular Biosciences

                Article
                936070
                10.3389/fmolb.2022.936070
                9272769
                35832738
                379ff650-4dd2-4495-b175-dc5630d90406
                Copyright © 2022 Walker, Maranto, Palicharla, Hwang, Mukhopadhyay and Qian.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 May 2022
                : 30 May 2022
                Funding
                Funded by: National Institute of Diabetes and Digestive and Kidney Diseases , doi 10.13039/100000062;
                Categories
                Molecular Biosciences
                Review

                polycystic kidney disease,cystogenesis,primary cilia,polycystin 1 and 2,tubby-like protein 3,cilia-dependent cyst activation,cilia-localized cyst inhibition,intraflagellar transport

                Comments

                Comment on this article