40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The SUN Protein Mps3 Is Required for Spindle Pole Body Insertion into the Nuclear Membrane and Nuclear Envelope Homeostasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.

          Author Summary

          Accurate segregation of chromosomes during mitosis is essential to prevent genetic instability and aneuploidy that lead to cancer and other diseases. Centrosomes and spindle pole bodies mediate the assembly of a microtubule-based structure known as the mitotic spindle, which physically separates chromosomes during mitosis so that the two daughter cells contain a complete copy of the genetic material as well as a spindle pole. During every cell cycle, the DNA and the spindle pole must be duplicated exactly once to ensure proper formation of a bipolar mitotic spindle. In yeast cells, the nuclear envelope does not break down, so the spindle pole must be inserted into the nuclear membrane so that it can form both the microtubules involved in the mitotic spindle and those involved in positioning of the nucleus. How a large protein complex such as the spindle pole body is inserted into the lipid layers of the nuclear membrane is not well understood. We show that the evolutionarily conserved SUN protein Mps3 is involved in spindle pole insertion into the nuclear membrane. This likely reflects a function for SUN proteins in controlling nuclear envelope structure by modulating the types of lipids that are present in the nuclear membrane.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic landscape of a cell.

          A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae.

            Green fluorescent protein (GFP) has become an increasingly popular protein tag for determining protein localization and abundance. With the availability of GFP variants with altered fluorescence spectra, as well as GFP homologues from other organisms, multi-colour fluorescence with protein tags is now possible, as is measuring protein interactions using fluorescence resonance energy transfer (FRET). We have created a set of yeast tagging vectors containing codon-optimized variants of GFP, CFP (cyan), YFP (yellow), and Sapphire (a UV-excitable GFP). These codon-optimized tags are twice as detectable as unoptimized tags. We have also created a tagging vector containing the monomeric DsRed construct tdimer2, which is up to 15-fold more detectable than tags currently in use. These tags significantly improve the detection limits for live-cell fluorescence imaging in yeast, and provide sufficient distinguishable fluorophores for four-colour imaging. Copyright 2004 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular architecture of the nuclear pore complex.

              Nuclear pore complexes (NPCs) are proteinaceous assemblies of approximately 50 MDa that selectively transport cargoes across the nuclear envelope. To determine the molecular architecture of the yeast NPC, we collected a diverse set of biophysical and proteomic data, and developed a method for using these data to localize the NPC's 456 constituent proteins (see the accompanying paper). Our structure reveals that half of the NPC is made up of a core scaffold, which is structurally analogous to vesicle-coating complexes. This scaffold forms an interlaced network that coats the entire curved surface of the nuclear envelope membrane within which the NPC is embedded. The selective barrier for transport is formed by large numbers of proteins with disordered regions that line the inner face of the scaffold. The NPC consists of only a few structural modules that resemble each other in terms of the configuration of their homologous constituents, the most striking of these being a 16-fold repetition of 'columns'. These findings provide clues to the evolutionary origins of the NPC.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2011
                November 2011
                17 November 2011
                : 7
                : 11
                : e1002365
                Affiliations
                [1 ]Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
                [2 ]Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
                Duke University, United States of America
                Author notes

                Conceived and designed the experiments: JMF SG CJS SLJ. Performed the experiments: JMF SG CJS SM BDS SLJ. Analyzed the data: JMF SG CJS SM JU SLJ. Contributed reagents/materials/analysis tools: SM BDM KJW KMD JU BDS. Wrote the paper: SLJ.

                Article
                PGENETICS-D-11-00941
                10.1371/journal.pgen.1002365
                3219597
                22125491
                37bf3325-7817-4578-a8aa-aa080634f729
                Friederichs et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 May 2011
                : 13 September 2011
                Page count
                Pages: 22
                Categories
                Research Article
                Biology
                Genetics
                Genetic Screens
                Molecular Genetics
                Histology
                Model Organisms
                Yeast and Fungal Models
                Molecular Cell Biology
                Chromosome Biology
                Mitosis
                Cell Growth
                Membranes and Sorting
                Chemistry
                Chemical Biology

                Genetics
                Genetics

                Comments

                Comment on this article

                scite_

                Similar content17

                Cited by37

                Most referenced authors1,746