64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      mRNA Export from Mammalian Cell Nuclei Is Dependent on GANP

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Bulk nuclear export of messenger ribonucleoproteins (mRNPs) through nuclear pore complexes (NPCs) is mediated by NXF1. It binds mRNPs through adaptor proteins such as ALY [1, 2] and SR splicing factors [3] and mediates translocation through the central NPC transport channel via transient interactions with FG nucleoporins [4–10]. Here, we show that mammalian cells require GANP (germinal center-associated nuclear protein) for efficient mRNP nuclear export and for efficient recruitment of NXF1 to NPCs. Separate regions of GANP show local homology to FG nucleoporins, the yeast mRNA export factor Sac3p, and the mammalian MCM3 acetyltransferase. GANP interacts with both NXF1 and NPCs and partitions between NPCs and the nuclear interior. GANP depletion inhibits mRNA export, with retention of mRNPs and NXF1 in punctate foci within the nucleus. The GANP N-terminal region that contains FG motifs interacts with the NXF1 FG-binding domain. Overexpression of this GANP fragment leads to nuclear accumulation of both poly(A) +RNA and NXF1. Treatment with transcription inhibitors redistributes GANP from NPCs into foci throughout the nucleus. These results establish GANP as an integral component of the mammalian mRNA export machinery and suggest a model whereby GANP facilitates the transfer of NXF1-containing mRNPs to NPCs.

          Abstract

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Exporting RNA from the nucleus to the cytoplasm.

          The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear organization of the genome and the potential for gene regulation.

            Much work has been published on the cis-regulatory elements that affect gene function locally, as well as on the biochemistry of the transcription factors and chromatin- and histone-modifying complexes that influence gene expression. However, surprisingly little information is available about how these components are organized within the three-dimensional space of the nucleus. Technological advances are now helping to identify the spatial relationships and interactions of genes and regulatory elements in the nucleus and are revealing an unexpectedly extensive network of communication within and between chromosomes. A crucial unresolved issue is the extent to which this organization affects gene function, rather than just reflecting it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope.

              Changes in the transcriptional state of genes have been correlated with their repositioning within the nuclear space. Tethering reporter genes to the nuclear envelope alone can impose repression and recent reports have shown that, after activation, certain genes can also be found closer to the nuclear periphery. The molecular mechanisms underlying these phenomena have remained elusive. Here, with the use of dynamic three-dimensional tracking of a single locus in live yeast (Saccharomyces cerevisiae) cells, we show that the activation of GAL genes (GAL7, GAL10 and GAL1) leads to a confinement in dynamic motility. We demonstrate that the GAL locus is subject to sub-diffusive movement, which after activation can become constrained to a two-dimensional sliding motion along the nuclear envelope. RNA-fluorescence in situ hybridization analysis after activation reveals a higher transcriptional activity for the peripherally constrained GAL genes than for loci remaining intranuclear. This confinement was mediated by Sus1 and Ada2, members of the SAGA histone acetyltransferase complex, and Sac3, a messenger RNA export factor, physically linking the activated GAL genes to the nuclear-pore-complex component Nup1. Deleting ADA2 or NUP1 abrogates perinuclear GAL confinement without affecting GAL1 transcription. Accordingly, transcriptional activation is necessary but not sufficient for the confinement of GAL genes at the nuclear periphery. The observed real-time dynamic mooring of active GAL genes to the inner side of the nuclear pore complex is in accordance with the 'gene gating' hypothesis.
                Bookmark

                Author and article information

                Journal
                Curr Biol
                Curr. Biol
                Current Biology
                Cell Press
                0960-9822
                1879-0445
                12 January 2010
                12 January 2010
                : 20
                : 1
                : 25-31
                Affiliations
                [1 ]MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
                [2 ]MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
                Author notes
                []Corresponding author vw222@ 123456hutchison-mrc.cam.ac.uk
                Article
                CURBIO7716
                10.1016/j.cub.2009.10.078
                2869303
                20005110
                38f1a7c5-a0d1-4cea-bb37-2d6204abed30
                © 2010 ELL & Excerpta Medica.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 9 August 2009
                : 23 October 2009
                : 28 October 2009
                Categories
                Report

                Life sciences
                rna
                Life sciences
                rna

                Comments

                Comment on this article