1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Long-term monitoring of Ark 120 withSwift

      , , , ,
      Monthly Notices of the Royal Astronomical Society
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results

          We present full sky microwave maps in five bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are 1 per mode to l=658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is 0.17 +/- 0.04, which implies a reionization epoch of 180+220-80 Myr (95% CL) after the Big Bang at a redshift of 20+10-9 (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. The age of the best-fit universe is 13.7 +/- 0.2 Gyr old. Decoupling was 379+8-7 kyr after the Big Bang at a redshift of 1089 +/- 1. The thickness of the decoupling surface was dz=195 +/- 2. The matter density is Omega_m h^2 = 0.135 +0.008 -0.009, the baryon density is Omega_b h^2 = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega_tot = 1.02 +/- 0.02. The spectral index of scalar fluctuations is fit as n_s = 0.93 +/- 0.03 at wavenumber k_0 = 0.05 Mpc^-1, with a running index slope of dn_s/d ln k = -0.031 +0.016 -0.018 in the best-fit model. This flat universe model is composed of 4.4% baryons, 22% dark matter and 73% dark energy. The dark energy equation of state is limited to w<-0.78 (95% CL). Inflation theory is supported with n_s~1, Omega_tot~1, Gaussian random phases of the CMB anisotropy, and superhorizon fluctuations. An admixture of isocurvature modes does not improve the fit. The tensor-to-scalar ratio is r(k_0=0.002 Mpc^-1)<0.90 (95% CL).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Swift X-ray Telescope

            The Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of Gamma-Ray Bursts (GRBs) and GRB afterglows. The X-ray Telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm^2 at 1.5 keV, field of view of 23.6 x 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10^-14 erg cm^-2 s^-1 in 10^4 seconds. The instrument is designed to provide automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The continuum of type 1 Seyfert galaxies. I - A single form modified by the effects of dust

                Bookmark

                Author and article information

                Journal
                Monthly Notices of the Royal Astronomical Society
                Mon. Not. R. Astron. Soc.
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                November 15 2016
                February 01 2017
                February 01 2017
                February 01 2017
                February 01 2017
                October 13 2016
                : 464
                : 4
                : 3955-3964
                Article
                10.1093/mnras/stw2636
                39155475-e4d1-45b8-b3e5-d470c3a85a7c
                © 2016
                History

                Comments

                Comment on this article