60
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Large-Scale Parallel Simulations of 3D Cell Colony Dynamics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The cosmological simulation code GADGET-2

          We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the `tree'-method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different timesteps. Individual and adaptive short-range timesteps may also be employed. The domain decomposition used in the parallelisation algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depend on the way the domains are cut. The code is efficient in terms of memory consumption and required communication bandwidth. It has been used to compute the first cosmological N-body simulation with more than 10^10 dark matter particles, reaching a homogeneous spatial dynamic range of 10^5 per dimension in a 3D box. It has also been used to carry out very large cosmological SPH simulations that account for radiative cooling and star formation, reaching total particle numbers of more than 250 million. We present the algorithms used by the code and discuss their accuracy and performance using a number of test problems. GADGET-2 is publicly released to the research community.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells.

              A new scanning probe-based microrheology approach is used to quantify the frequency-dependent viscoelastic behavior of both fibroblast cells and polymer gels. The scanning probe shape was modified using polystyrene beads for a defined surface area nondestructively deforming the sample. An extended Hertz model is introduced to measure the frequency-dependent storage and loss moduli even for thin cell samples. Control measurements of the polyacrylamide gels compare well with conventional rheological data. The cells show a viscoelastic signature similar to in vitro actin gels.
                Bookmark

                Author and article information

                Journal
                Computing in Science & Engineering
                Comput. Sci. Eng.
                Institute of Electrical and Electronics Engineers (IEEE)
                1521-9615
                September 2014
                September 2014
                : 16
                : 5
                : 86-95
                Article
                10.1109/MCSE.2014.2
                3a3f72db-27aa-4381-98fe-7c419d8f8901
                © 2014
                History

                Comments

                Comment on this article