9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolite identification of gut microflora-cassia seed interactions using UPLC-QTOF/MS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cassia seed is the dried ripe seed of Cassia obtusifolia L. or Cassia tora L., which is widely used as a food or traditional Chinese medicine. The aim of the present study was to detect the components and metabolites in the culture of human or rat intestinal microflora suspension with the water decoction of cassia seed in vitro, using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry system equipped with a negative ion scan mode. Initially, ellagic acid was identified in the cassia seed decoction. Subsequently, six different metabolites, including urolithin (uro)-A, uro-B, uro-D, uro-M6, uro-M7 and uro-B-glucuronide (glur), were detected after co-culture of the cassia seed decoction with intestinal microflora, but not in the cassia seed decoction alone. Uro-M6, uro-M7, uro-A and uro-B were common metabolites in the culture of human or rat intestinal microflora suspension with the water decoction of cassia seed. However, uro-D was only detected in the culture of rat intestinal microflora suspension with the water decoction of cassia seed, and uro-B-glur was only detected in the culture of human intestinal microflora with the water decoction of cassia seed. The uro and intermediate metabolites were produced by ellagic acid in the cassia seed decoction under the action of the intestinal microflora. The production of metabolites might be related to the abundance and diversity of the intestinal microflora in humans and rats. The present study provided rationale for further pharmacological and clinical studies on the mechanisms of action of cassia seeds.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Commensal bacteria produce GPCR ligands that mimic human signaling molecules

          Summary Statement Commensal bacteria are believed to play important roles in human health. The mechanisms by which they affect mammalian physiology are poorly understood; however, bacterial metabolites are likely to be key components of host interactions. Here, we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands although future studies are needed to define their potential physiologic role in humans. This work suggests that chemical mimicry of eukaryotic signaling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a new small molecule therapeutic modality (microbiome-biosynthetic-gene-therapy).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours.

            Ellagitannins (ETs) from pomegranate juice (PJ) are reported to have numerous biological properties, but their absorption and metabolism in humans are poorly understood. To investigate the pharmacokinetics of pomegranate ETs, 18 healthy volunteers were given 180 mL of PJ concentrate, and blood samples were obtained for 6 h afterwards. Twenty-four-hour urine collections were obtained on the day before (-1), the day of (0), and the day after (+1) the study. Ellagic acid (EA) was detected in plasma of all subjects with a maximum concentration of 0.06 +/- 0.01 micromol/L, area under concentration time curve of 0.17 +/- 0.02 (micromol x h) x L(-1), time of maximum concentration of 0.98 +/- 0.06 h, and elimination half-life of 0.71 +/- 0.08 h. EA metabolites, including dimethylellagic acid glucuronide (DMEAG) and hydroxy-6H-benzopyran-6-one derivatives (urolithins), were also detected in plasma and urine in conjugated and free forms. DMEAG was found in the urine obtained from 15 of 18 subjects on d 0, but was not detected on d -1 or +1, demonstrating its potential as a biomarker of intake. Urolithin A-glucuronide was found in urine samples from 11 subjects on d 0 and in the urine from 16 subjects on d +1. Urolithin B-glucuronide was found in the urine of 3 subjects on d 0 and in the urine of 5 subjects on d +1. Urolithins, formed by intestinal bacteria, may contribute to the biological effects of PJ as they may persist in plasma and tissues and account for some of the health benefits noted after chronic PJ consumption. Whether genetic polymorphisms in EA-metabolizing enzymes (e.g., catechol-O-methyl transferase and glucuronosyl transferase) are related to variations in response to PJ remains to be established.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species.

              Ellagitannin and ellagic acid metabolism to urolithins in the gut shows a large human interindividual variability and this has been associated with differences in the colon microbiota. In the present study we describe the isolation of one urolithin-producing strain from the human faeces of a healthy volunteer and the ellagic acid transformation to different urolithin metabolites by two species of intestinal bacteria. The isolate belongs to a new species described as Gordonibacter urolithinfaciens, sp. nov. The type strain of the Gordonibacter genus, Gordonibacter pamelaeae DSM 19378(T), was also demonstrated to produce urolithins. Both human intestinal bacteria grew similarly in the presence and absence of ellagic acid at 30 μM concentration. Ellagic acid catabolism and urolithin formation occurred during the stationary phase of the growth of the bacteria under anaerobic conditions. The HPLC-MS analyses showed the sequential production of pentahydroxy-urolithin (urolithin M-5), tetrahydroxy-urolithin (urolithin M-6) and trihydroxy-urolithin (urolithin C), while dihydroxy-urolithins (urolithin A and isourolithin A), and monohydroxy-urolithin (urolithin B) were not produced in pure cultures. Consequently, either other bacteria from the gut or the physiological conditions found in vivo are necessary for completing metabolism until the final urolithins (dihydroxy and monohydroxy urolithins) are produced. This is the first time that the urolithin production capacity of pure strains has been demonstrated. The identification of the urolithin-producing bacteria is a relevant outcome as urolithin implication in health (cardiovascular protection, anti-inflammatory and anticarcinogenic properties) has been supported by different bioassays and urolithins can be used in the development of functional foods and nutraceuticals. This study represents an initial work that opens interesting possibilities of describing enzymatic activities involved in urolithin production that can help in understanding both the human interindividual differences in polyphenol metabolism, the microbial pathways involved, and the role of polyphenols in human health. The presence of urolithin producing bacteria can indirectly affect the health benefits of ellagitannin consumption.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                May 2020
                09 March 2020
                09 March 2020
                : 19
                : 5
                : 3305-3315
                Affiliations
                College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
                Author notes
                Correspondence to: Dr Han-Bing Li, College of Pharmacy, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan 450046, P.R. China lihanbing@ 123456hactcm.edu.cn
                Article
                ETM-0-0-8585
                10.3892/etm.2020.8585
                7132226
                32266027
                3ba103e4-b934-4875-8635-e2e0e8d537b6
                Copyright: © Wu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 21 March 2019
                : 09 January 2020
                Categories
                Articles

                Medicine
                cassia seed,ellagic acid,intestinal microflora,ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry,urolithin

                Comments

                Comment on this article