Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by serotypes of the Enterovirus A species in the genus Enterovirus of the Picornaviridae family. The disease has had a substantial burden throughout East and Southeast Asia over the past 15 y. China reported 9 million cases of HFMD between 2008 and 2013, with the two serotypes Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) being responsible for the majority of these cases. Three recent phase 3 clinical trials showed that inactivated monovalent EV-A71 vaccines manufactured in China were highly efficacious against HFMD associated with EV-A71, but offered no protection against HFMD caused by CV-A16. To better inform vaccination policy, we used mathematical models to evaluate the effect of prospective vaccination against EV-A71-associated HFMD and the potential risk of serotype replacement by CV-A16. We also extended the model to address the co-circulation, and implications for vaccination, of additional non-EV-A71, non-CV-A16 serotypes of enterovirus.
Weekly reports of HFMD incidence from 31 provinces in Mainland China from 1 January 2009 to 31 December 2013 were used to fit multi-serotype time series susceptible–infected–recovered (TSIR) epidemic models. We obtained good model fit for the two-serotype TSIR with cross-protection, capturing the seasonality and geographic heterogeneity of province-level transmission, with strong correlation between the observed and simulated epidemic series. The national estimate of the basic reproduction number, R 0, weighted by provincial population size, was 26.63 for EV-A71 (interquartile range [IQR]: 23.14, 30.40) and 27.13 for CV-A16 (IQR: 23.15, 31.34), with considerable variation between provinces (however, predictions about the overall impact of vaccination were robust to this variation). EV-A71 incidence was projected to decrease monotonically with higher coverage rates of EV-A71 vaccination. Across provinces, CV-A16 incidence in the post-EV-A71-vaccination period remained either comparable to or only slightly increased from levels prior to vaccination. The duration and strength of cross-protection following infection with EV-A71 or CV-A16 was estimated to be 9.95 wk (95% confidence interval [CI]: 3.31, 23.40) in 68% of the population (95% CI: 37%, 96%). Our predictions are limited by the necessarily short and under-sampled time series and the possible circulation of unidentified serotypes, but, nonetheless, sensitivity analyses indicate that our results are robust in predicting that the vaccine should drastically reduce incidence of EV-A71 without a substantial competitive release of CV-A16.
The ability of our models to capture the observed epidemic cycles suggests that herd immunity is driving the epidemic dynamics caused by the multiple serotypes of enterovirus. Our results predict that the EV-A71 and CV-A16 serotypes provide a temporary immunizing effect against each other. Achieving high coverage rates of EV-A71 vaccination would be necessary to eliminate the ongoing transmission of EV-A71, but serotype replacement by CV-A16 following EV-A71 vaccination is likely to be transient and minor compared to the corresponding reduction in the burden of EV-A71-associated HFMD. Therefore, a mass EV-A71 vaccination program of infants and young children should provide significant benefits in terms of a reduction in overall HFMD burden.
Using time series susceptible–infected–recovered (TSIR) epidemic models, Saki Takahashi and colleagues investigate hand, foot, and mouth disease dynamics and the projected effect of vaccination in China.
Hand, foot, and mouth disease (HFMD)—a common ailment that mainly affects young children—is caused by a group of enteroviruses ( Enterovirus A species), which are close relatives of polioviruses ( Enterovirus C species). Enteroviruses are divided into various viral serotypes (variants defined by molecules on their surface that are recognized by the immune system), and the most common serotypes that cause HFMD are Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16). Enteroviruses spread from person to person through contact with the mucus or saliva produced when an infected individual coughs or sneezes, with the feces or the fluid from vesicles of an infected individual, and through contact with contaminated surfaces. Frequent handwashing and good hygiene practices can reduce the spread of HFMD. Symptoms of HFMD include fever, sore throat, a non-itchy red rash with small blisters on the hands and feet, and painful mouth ulcers. HFMD is usually a self-limiting illness, and most children recover within 7–10 days. A small proportion of patients infected with EV-A71 develop severe complications such as meningitis (infection of the membranes around the brain and spinal cord) or encephalitis (infection of the brain). Currently, there is no specific treatment for HFMD, and vaccines are not yet available for routine use.
HFMD is increasingly common in East and Southeast Asia. China, for example, reported 9 million cases of HFMD between 2008 and 2013. Vaccination is a specific and effective way to reduce the burden of HFMD in China. In three clinical trials, inactivated monovalent EV-A71 vaccines made in China were highly efficacious against EV-A71-associated HFMD but provided no protection against CV-A16-associated HFMD (an inactivated monovalent vaccine contains a single virus strain that is unable to replicate; exposure to the vaccine “primes” the immune system to respond quickly when challenged with live virus, thereby preventing infection with that virus). So, before these vaccines can be used for routine vaccination of infants, it is important to know whether vaccination with EV-A71 will alter the burden of HFMD caused by other enterovirus serotypes. In particular, it is important to know whether infection with EV-A71 provides cross-protection against CV-A16 and whether infections with CV-A16 or other serotypes might increase following vaccination against EV-A71 because of increased circulation of these viruses in the population (serotype replacement). Here, the researchers use mathematical models to assess the effect of vaccination against EV-A71-associated HFMD in China and the potential risk of serotype replacement by CV-A16.
The researchers used weekly data on HFMD incidence collected in 31 Chinese provinces between 2009 and 2013 to develop a two-serotype time series susceptible–infected–recovered epidemic model (a model in which individuals are born, become susceptible to a disease, become infected and infectious with the disease, and recover). The model accurately simulated the epidemic cycles of EV-A71- and CV-A16-associated HFMD for the 31 provinces and the seasonal transmission patterns in both northern and southern Chinese provinces. It provided an estimate of cross-protection following infection with EV-A71 or CV-A16 of ten weeks in 68% of the population (an average duration of cross-protection of 6.77 weeks). The estimated basic reproduction number (the average number of additional cases one case of an infectious disease generates in an otherwise uninfected population) across China for both serotypes was 25, which means that vaccination coverage levels of above 96% are required to achieve population-level immunity. Finally, the model predicted a decrease in EV-A71-associated HFMD incidence with higher rates of EV-A71 vaccination and suggested that CV-A16 incidence following EV-A71 vaccination would be comparable to or only slightly higher than its incidence before vaccination.
These findings suggest that herd immunity (indirect protection from infectious disease that occurs when most of a population has become immune to an infection, thereby providing some protection for the rare individuals who are not immune) is driving the dynamics of the HFMD epidemic caused by multiple enterovirus serotypes in China. Moreover, they suggest that the infection with EV-A71 or CV-A16 serotype can provide temporary immunity against each the other serotype and that serotype replacement by CV-A16 following EV-A71 vaccination is likely to be transient and minor compared to the reduction in the burden of EV-A71-associated HFMD produced by vaccination. The accuracy of these findings depends on the assumptions included in the model and the quality and quantity of data used to run the models. However, the researchers suggest that a mass EV-A71 vaccination campaign targeted at infants and young children should greatly reduce the burden of HFMD in China, provided a high vaccination uptake level is achieved.
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001958.
The US Centers for Disease Control and Prevention provide information on hand, foot, and mouth disease (in English and Spanish), including a podcast on the condition
The UK National Health Service Choices website provides detailed information on hand, foot, and mouth disease
Further information about hand, foot, and mouth disease is provided by the World Health Organization (including up-to-date HFMD surveillance reports from China), the Nemours Foundation (in English and Spanish), and MedlinePlus (in English and Spanish)
The Government of the Hong Kong Special Administrative Region Department of Health Centre for Health Protection provides information on hand, foot, and mouth disease