16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.

          This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension.

            Our understanding of the pathobiology of severe pulmonary hypertension, usually a fatal disease, has been hampered by the lack of information of its natural history. We have demonstrated that, in human severe pulmonary hypertension, the precapillary pulmonary arteries show occlusion by proliferated endothelial cells. Vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) are involved in proper maintenance, differentiation, and function of endothelial cells. We demonstrate here that VEGFR-2 blockade with SU5416 in combination with chronic hypobaric hypoxia causes severe pulmonary hypertension associated with precapillary arterial occlusion by proliferating endothelial cells. Prior to and concomitant with the development of severe pulmonary hypertension, lungs of chronically hypoxic SU5416-treated rats show significant pulmonary endothelial cell death, as demonstrated by activated caspase 3 immunostaining and TUNEL. The broad caspase inhibitor Z-Asp-CH2-DCB prevents the development of intravascular pulmonary endothelial cell growth and severe pulmonary hypertension caused by the combination of SU5416 and chronic hypoxia.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Endothelial dysfunction in pulmonary hypertension.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                3 March 2016
                2016
                : 11
                : 3
                : e0150480
                Affiliations
                [1 ]Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
                [2 ]Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
                [3 ]Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
                [4 ]Metabolon, Durham, North Carolina, United States of America
                [5 ]Division of Neonatology, University of California San Francisco, San Francisco, California, United States of America
                [6 ]Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
                [7 ]Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
                Cincinnati Children's Hospital Medical Center, UNITED STATES
                Author notes

                Competing Interests: Involvement of Metabolon inc. in this manuscript does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: RR SMB. Performed the experiments: OR MLM. Analyzed the data: JMK RR AAD JXJY JGNG EM. Contributed reagents/materials/analysis tools: JMK RPM SMB. Wrote the paper: RR SMB JRF OR.

                Article
                PONE-D-15-47348
                10.1371/journal.pone.0150480
                4777490
                26937637
                3cb7b56f-ee18-4134-8752-85dfa92a819c
                © 2016 Rafikova et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 October 2015
                : 14 February 2016
                Page count
                Figures: 11, Tables: 0, Pages: 21
                Funding
                This research was supported in part by National Institutes of Health grants HL60190 (to SMB), HL67841 (to SMB), and P01HL0101902; by an Entelligence Actelion Young Investigator Award for Research Excellence in Pulmonary Hypertension and by F32HL103136 (to OR); a Scientist Development Grant (14SDG20480354) from the American Heart Association National Office (to RR). Metabolon inc. provided support in the form of salaries for authors JMK and RPM, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the 'author contributions' section.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Inflammation
                Biology and Life Sciences
                Biochemistry
                Lipids
                Fatty Acids
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Heart
                Cardiac Ventricles
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Heart
                Cardiac Ventricles
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Metabolites
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Carbohydrate Metabolism
                Glucose Metabolism
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Arginine
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Arginine
                Biology and Life Sciences
                Biochemistry
                Proteins
                Amino Acids
                Basic Amino Acids
                Arginine
                Biology and Life Sciences
                Biochemistry
                Neurochemistry
                Neurochemicals
                Nitric Oxide
                Biology and Life Sciences
                Neuroscience
                Neurochemistry
                Neurochemicals
                Nitric Oxide
                Biology and Life Sciences
                Developmental Biology
                Fibrosis
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article