46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward developmental models of psychiatric disorders in zebrafish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psychiatric disorders are a diverse set of diseases that affect all aspects of mental function including social interaction, thinking, feeling, and mood. Although psychiatric disorders place a large economic burden on society, the drugs available to treat them are often palliative with variable efficacy and intolerable side-effects. The development of novel drugs has been hindered by a lack of knowledge about the etiology of these diseases. It is thus necessary to further investigate psychiatric disorders using a combination of human molecular genetics, gene-by-environment studies, in vitro pharmacological and biochemistry experiments, animal models, and investigation of the non-biological basis of these diseases, such as environmental effects. Many psychiatric disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, mental retardation, and schizophrenia can be triggered by alterations to neural development. The zebrafish is a popular model for developmental biology that is increasingly used to study human disease. Recent work has extended this approach to examine psychiatric disorders as well. However, since psychiatric disorders affect complex mental functions that might be human specific, it is not possible to fully model them in fish. In this review, I will propose that the suitability of zebrafish for developmental studies, and the genetic tools available to manipulate them, provide a powerful model to study the roles of genes that are linked to psychiatric disorders during neural development. The relative speed and ease of conducting experiments in zebrafish can be used to address two areas of future research: the contribution of environmental factors to disease onset, and screening for novel therapeutic compounds.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Mutation and cancer: statistical study of retinoblastoma.

          A Knudson (1971)
          Based upon observations on 48 cases of retinoblastoma and published reports, the hypothesis is developed that retinoblastoma is a cancer caused by two mutational events. In the dominantly inherited form, one mutation is inherited via the germinal cells and the second occurs in somatic cells. In the nonhereditary form, both mutations occur in somatic cells. The second mutation produces an average of three retinoblastomas per individual inheriting the first mutation. Using Poisson statistics, one can calculate that this number (three) can explain the occasional gene carrier who gets no tumor, those who develop only unilateral tumors, and those who develop bilateral tumors, as well as explaining instances of multiple tumors in one eye. This value for the mean number of tumors occurring in genetic carriers may be used to estimate the mutation rate for each mutation. The germinal and somatic rates for the first, and the somatic rate for the second, mutation, are approximately equal. The germinal mutation may arise in some instances from a delayed mutation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular genetics of attention-deficit/hyperactivity disorder.

            Results of behavioral genetic and molecular genetic studies have converged to suggest that both genetic and nongenetic factors contribute to the development of attention-deficit/hyperactivity disorder (ADHD). We review this literature, with a particular emphasis on molecular genetic studies. Family, twin, and adoption studies provide compelling evidence that genes play a strong role in mediating susceptibility to ADHD. This fact is most clearly seen in the 20 extant twin studies, which estimate the heritability of ADHD to be .76. Molecular genetic studies suggest that the genetic architecture of ADHD is complex. The few genome-wide scans conducted thus far are not conclusive. In contrast, the many candidate gene studies of ADHD have produced substantial evidence implicating several genes in the etiology of the disorder. For the eight genes for which the same variant has been studied in three or more case-control or family-based studies, seven show statistically significant evidence of association with ADHD on the basis of the pooled odds ratio across studies: DRD4, DRD5, DAT, DBH, 5-HTT, HTR1B, and SNAP-25.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autism spectrum disorders: developmental disconnection syndromes.

              Autism is a common and heterogeneous childhood neurodevelopmental disorder. Analogous to broad syndromes such as mental retardation, autism has many etiologies and should be considered not as a single disorder but, rather, as 'the autisms'. However, recent genetic findings, coupled with emerging anatomical and functional imaging studies, suggest a potential unifying model in which higher-order association areas of the brain that normally connect to the frontal lobe are partially disconnected during development. This concept of developmental disconnection can accommodate the specific neurobehavioral features that are observed in autism, their emergence during development, and the heterogeneity of autism etiology, behaviors and cognition.
                Bookmark

                Author and article information

                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                26 April 2013
                2013
                : 7
                : 79
                Affiliations
                Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester Leicester, UK
                Author notes

                Edited by: Gonzalo G. De Polavieja, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Spain

                Reviewed by: Hitoshi Okamoto, RIKEN Brain Science Institute, Japan; David Parker, Cambridge University, UK

                *Correspondence: William H. J. Norton, Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester, University Road, Leicester LE1 7RH, UK. e-mail: whjn1@ 123456le.ac.uk
                Article
                10.3389/fncir.2013.00079
                3636468
                23637652
                3d7f2174-9863-4319-aa84-621b44a0dc82
                Copyright © Norton.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 24 January 2013
                : 09 April 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 155, Pages: 12, Words: 0
                Categories
                Neuroscience
                Review Article

                Neurosciences
                zebrafish,psychiatric disorders,development,attention-deficit/hyperactivity disorder,autism spectrum disorder,schizophrenia,mental retardation

                Comments

                Comment on this article