11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For decades, it has been widely believed that the blood–brain barrier (BBB) provides an immune privileged environment in the central nervous system (CNS) by blocking peripheral immune cells and humoral immune factors. This view has been revised in recent years, with increasing evidence revealing that the peripheral immune system plays a critical role in regulating CNS homeostasis and disease. Neurodegenerative diseases are characterized by progressive dysfunction and the loss of neurons in the CNS. An increasing number of studies have focused on the role of the connection between the peripheral immune system and the CNS in neurodegenerative diseases. On the one hand, peripherally released cytokines can cross the BBB, cause direct neurotoxicity and contribute to the activation of microglia and astrocytes. On the other hand, peripheral immune cells can also infiltrate the brain and participate in the progression of neuroinflammatory and neurodegenerative diseases. Neurodegenerative diseases have a high morbidity and disability rate, yet there are no effective therapies to stop or reverse their progression. In recent years, neuroinflammation has received much attention as a therapeutic target for many neurodegenerative diseases. In this review, we highlight the emerging role of the peripheral and central immune systems in neurodegenerative diseases, as well as their interactions. A better understanding of the emerging role of the immune systems may improve therapeutic strategies for neurodegenerative diseases.

          Related collections

          Most cited references221

          • Record: found
          • Abstract: found
          • Article: not found

          Neurotoxic reactive astrocytes are induced by activated microglia

          A reactive astrocyte subtype termed A1 is induced after injury or disease of the central nervous system and subsequently promotes the death of neurons and oligodendrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil recruitment and function in health and inflammation.

            Neutrophils have traditionally been thought of as simple foot soldiers of the innate immune system with a restricted set of pro-inflammatory functions. More recently, it has become apparent that neutrophils are, in fact, complex cells capable of a vast array of specialized functions. Although neutrophils are undoubtedly major effectors of acute inflammation, several lines of evidence indicate that they also contribute to chronic inflammatory conditions and adaptive immune responses. Here, we discuss the key features of the life of a neutrophil, from its release from bone marrow to its death. We discuss the possible existence of different neutrophil subsets and their putative anti-inflammatory roles. We focus on how neutrophils are recruited to infected or injured tissues and describe differences in neutrophil recruitment between different tissues. Finally, we explain the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.

              Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions. Furthermore, blood-brain barrier disruption provoked immediate and focal activation of microglia, switching their behavior from patroling to shielding of the injured site. Microglia thus are busy and vigilant housekeepers in the adult brain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                25 April 2022
                2022
                : 14
                : 872134
                Affiliations
                [1] 1Department of Infectious Disease, Shengjing Hospital of China Medical University , Shenyang, China
                [2] 2Department of Neurology, the Fourth Affiliated Hospital of China Medical University , Shenyang, China
                Author notes

                Edited by: Chao Wang, Chongqing Medical University, China

                Reviewed by: Wei Sun, National Institute of Mental Health (NIH), United States; Jun Cai, University of Louisville, United States; Ádám Nyúl-Tóth, University of Oklahoma Health Sciences Center, United States

                *Correspondence: Yongzhen Zhai zyz200084@ 123456sina.com

                This article was submitted to Neuroinflammation and Neuropathy, a section of the journal Frontiers in Aging Neuroscience

                †These authors have contributed equally this work

                Article
                10.3389/fnagi.2022.872134
                9082639
                35547626
                3db57587-85cb-4513-b858-6b36f925e409
                Copyright © 2022 Zang, Chen, Zhu, Ma and Zhai.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 February 2022
                : 25 March 2022
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 221, Pages: 19, Words: 18026
                Categories
                Aging Neuroscience
                Review

                Neurosciences
                peripheral immune system,central nervous system,neurodegenerative diseases,amyotrophic lateral sclerosis,alzheimer's disease,parkinson's disease

                Comments

                Comment on this article