3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ENaC activation by proteases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proteases are fundamental for a plethora of biological processes, including signalling and tissue remodelling, and dysregulated proteolytic activity can result in pathogenesis. In this review, we focus on a subclass of membrane‐bound and soluble proteases that are defined as channel‐activating proteases (CAPs), since they induce Na + ion transport through an autocrine mechanism when co‐expressed with the highly amiloride‐sensitive epithelial sodium channel (ENaC) in Xenopus oocytes. These experiments first identified CAP1 (channel‐activating protease 1, prostasin) followed by CAP2 (channel‐activating protease 2, TMPRSS4) and CAP3 (channel‐activating protease 3, matriptase) as in vitro mediators of ENaC current. Since then, more serine‐, cysteine‐ and metalloproteases were confirmed as in vitro CAPs that potentially cleave and regulate ENaC, and thus this nomenclature was not further followed, but is accepted as functional term or alias. The precise mechanism of ENaC modulation by proteases has not been fully elucidated. Studies in organ‐specific protease knockout models revealed evidence for their role in increasing ENaC activity, although the proteases responsible for ENaC activation are yet to be identified. We summarize recent findings in animal models of these CAPs with respect to their implication in ENaC activation. We discuss the consequences of dysregulated CAPs underlying epithelial phenotypes in pathophysiological conditions, and the role of selected protease inhibitors. We believe that these proteases may present interesting therapeutic targets for diseases with aberrant sodium homoeostasis.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          UniProt: the universal protein knowledgebase in 2021

          (2020)
          Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors

            The MEROPS database (http://merops.sanger.ac.uk) is an integrated source of information about peptidases, their substrates and inhibitors, which are of great relevance to biology, medicine and biotechnology. The hierarchical classification of the database is as follows: homologous sets of sequences are grouped into a protein species; protein species are grouped into a family; families are grouped into clans. There is a type example for each protein species (known as a ‘holotype’), family and clan, and each protein species, family and clan has its own unique identifier. Pages to show the involvement of peptidases and peptidase inhibitors in biological pathways have been created. Each page shows the peptidases and peptidase inhibitors involved in the pathway, along with the known substrate cleavages and peptidase-inhibitor interactions, and a link to the KEGG database of biological pathways. Links have also been established with the IUPHAR Guide to Pharmacology. A new service has been set up to allow the submission of identified substrate cleavages so that conservation of the cleavage site can be assessed. This should help establish whether or not a cleavage site is physiologically relevant on the basis that such a cleavage site is likely to be conserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary dynamics of gene and isoform regulation in Mammalian tissues.

              Most mammalian genes produce multiple distinct messenger RNAs through alternative splicing, but the extent of splicing conservation is not clear. To assess tissue-specific transcriptome variation across mammals, we sequenced complementary DNA from nine tissues from four mammals and one bird in biological triplicate, at unprecedented depth. We find that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specific. Thousands of previously unknown, lineage-specific, and conserved alternative exons were identified; widely conserved alternative exons had signatures of binding by MBNL, PTB, RBFOX, STAR, and TIA family splicing factors, implicating them as ancestral mammalian splicing regulators. Our data also indicate that alternative splicing often alters protein phosphorylatability, delimiting the scope of kinase signaling.
                Bookmark

                Author and article information

                Journal
                Acta Physiol (Oxf)
                Acta Physiol (Oxf)
                10.1111/(ISSN)1748-1716
                APHA
                Acta Physiologica (Oxford, England)
                John Wiley and Sons Inc. (Hoboken )
                1748-1708
                1748-1716
                21 March 2022
                May 2022
                : 235
                : 1 ( doiID: 10.1111/apha.v235.1 )
                : e13811
                Affiliations
                [ 1 ] Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
                [ 2 ] National Center of Competence in Research, Kidney.CH Lausanne Switzerland
                Author notes
                [*] Correspondence

                Edith Hummler, University of Lausanne, Department of Biomedical Sciences, Rue du Bugnon 27, CH‐1011 Lausanne, Switzerland.

                Email: edith.hummler@ 123456unil.ch

                Author information
                https://orcid.org/0000-0002-7844-7051
                https://orcid.org/0000-0002-3887-2715
                https://orcid.org/0000-0002-7842-1150
                Article
                APHA13811
                10.1111/apha.13811
                9540061
                35276025
                3e1fe420-ed46-4f49-90d5-906da5134abb
                © 2022 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 04 March 2022
                : 11 February 2021
                : 08 March 2022
                Page count
                Figures: 4, Tables: 1, Pages: 13, Words: 7758
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung , doi 10.13039/501100001711;
                Award ID: 31003A_182478
                Funded by: Swiss National Center of Competence in Research, Kidney.CH
                Award ID: N‐403‐07‐23
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                May 2022
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.2.0 mode:remove_FC converted:07.10.2022

                Anatomy & Physiology
                epithelial phenotype,epithelial sodium channel,homoeostasis,kidney disease

                Comments

                Comment on this article