8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maturation and abundance of tertiary lymphoid structures are associated with the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tertiary lymphoid structures (TLS) existence is correlated with favorable prognosis in many types of cancer including non-small cell lung cancer (NSCLC). However, TLS formation and its relationship with treatment response remains unknown in NSCLC who received anti-PD-1 antibody plus chemotherapy as the neoadjuvant treatment (neoadjuvant chemoimmunotherapy). Here, we investigate TLS maturation and abundance in resectable NSCLC receiving neoadjuvant treatments. We retrospectively collected formalin-fixed paraffin embedded (FFPE) tissues from patients with resectable NSCLC (stage II–IIIA) from three cohorts based on treatment: naïve (N=40), neoadjuvant chemoimmunotherapy (N=40), and neoadjuvant chemotherapy (N=41). The TLS in tumor tissues was detected by immunohistochemical staining, and the differences in TLS maturation and abundance among different treatment groups were analyzed, as well as the relationship with pathological response and prognosis of patients. Multiplex immunofluorescence staining was used to explore the features of immune microenvironment. Higher major pathological response (MPR) rate and pathological complete response (pCR) rate were in the neoadjuvant chemoimmunotherapy group than in the neoadjuvant chemotherapy group (MPR: 45.0% vs 17.1%; pCR: 35.0% vs 4.9%). Among the three cohorts, neoadjuvant chemoimmunotherapy-treated NSCLCs displayed highest TLS maturation and abundance. Both the maturation and abundance of TLS were significantly correlated with MPR in both the neoadjuvant chemoimmunotherapy and the chemotherapy group. Patients with high maturation and abundance of TLS exhibited better disease-free survival (DFS) in all the three cohorts. TLS maturation was also an independent predictor for DFS in the neoadjuvant chemoimmunotherapy and treatment naïve group. Multiplex immunohistochemistry analysis using paired biopsy-surgery samples showed increased infiltration of CD8+T cell and decreased infiltration of M1 and M2 macrophages after neoadjuvant chemoimmunotherapy treatment in patients achieving MPR. There were no significant differences in features of immune cell infiltration for those with mature TLS achieving MPR when cross-compared across the three cohorts. These results demonstrate that TLS maturation is associated with MPR and an independent predictor for DFS in resectable neoadjuvant chemoimmunotherapy-treated NSCLC. The induction of TLS maturation may be a potential mechanism of action of neoadjuvant chemoimmunotherapy in resectable NSCLC.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics, 2012.

          Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests. © 2015 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            B cells and tertiary lymphoid structures promote immunotherapy response

            Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers1-10 and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity11-15, although these have been less well-studied in ICB treatment16. A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling17 that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter18) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neoadjuvant PD-1 Blockade in Resectable Lung Cancer

              BACKGROUND Antibodies that block programmed death 1 (PD-1) protein improve survival in patients with advanced non–small-cell lung cancer (NSCLC) but have not been tested in resectable NSCLC, a condition in which little progress has been made during the past decade. METHODS In this pilot study, we administered two preoperative doses of PD-1 inhibitor nivolumab in adults with untreated, surgically resectable early (stage I, II, or IIIA) NSCLC. Nivolumab (at a dose of 3 mg per kilogram of body weight) was administered intravenously every 2 weeks, with surgery planned approximately 4 weeks after the first dose. The primary end points of the study were safety and feasibility. We also evaluated the tumor pathological response, expression of programmed death ligand 1 (PD-L1), mutational burden, and mutation-associated, neoantigen-specific T-cell responses. RESULTS Neoadjuvant nivolumab had an acceptable side-effect profile and was not associated with delays in surgery. Of the 21 tumors that were removed, 20 were completely resected. A major pathological response occurred in 9 of 20 resected tumors (45%). Responses occurred in both PD-L1-positive and PD-L1-negative tumors. There was a significant correlation between the pathological response and the pretreatment tumor mutational burden. The number of T-cell clones that were found in both the tumor and peripheral blood increased systemically after PD-1 blockade in eight of nine patients who were evaluated. Mutation-associated, neoantigen-specific T-cell clones from a primary tumor with a complete response on pathological assessment rapidly expanded in peripheral blood at 2 to 4 weeks after treatment; some of these clones were not detected before the administration of nivolumab. CONCLUSIONS Neoadjuvant nivolumab was associated with few side effects, did not delay surgery, and induced a major pathological response in 45% of resected tumors. The tumor mutational burden was predictive of the pathological response to PD-1 blockade. Treatment induced expansion of mutation-associated, neoantigen-specific T-cell clones in peripheral blood. (Funded by Cancer Research Institute–Stand Up 2 Cancer and others; ClinicalTrials.gov number, NCT02259621.)
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2022
                8 November 2022
                : 10
                : 11
                : e005531
                Affiliations
                [1 ] departmentDepartment of Lung Cancer , Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                [2 ] departmentDepartment of Anesthesiology , National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                [3 ] departmentDepartment of Pathology , National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                [4 ] departmentDepartment of the Medical , 3D Medicines Inc , Shanghai, China
                Author notes
                [Correspondence to ] Dr Dongsheng Yue; yuedongsheng@ 123456tmu.edu.cn ; Professor Changli Wang; wangchangli@ 123456tjmuch.com ; Bin Zhang; zhangbin_09@ 123456tmu.edu.cn

                XS, WL, LS and HM are joint first authors.

                CW, BZ and DY are joint senior authors.

                Author information
                http://orcid.org/0000-0002-5672-6164
                Article
                jitc-2022-005531
                10.1136/jitc-2022-005531
                9644367
                37011953
                401f4656-97c7-4c12-81f6-4015826c06f5
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 18 October 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82173038
                Award ID: 82273119
                Funded by: National Natural Science Foundation of China;
                Award ID: 82273119
                Categories
                Immunotherapy Biomarkers
                1506
                2437
                Custom metadata
                unlocked

                tumor biomarkers,immunohistochemistry,tumor microenvironment

                Comments

                Comment on this article