3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temporal regulation of alternative splicing events in rice memory under drought stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant adaptation to drought stress is essential for plant survival and crop yield. Recently, harnessing drought memory, which is induced by repeated stress and recovery cycles, was suggested as a means to improve drought resistance at the transcriptional level. However, the genetic mechanism underlying drought memory is unclear. Here, we carried out a quantitative analysis of alternative splicing (AS) events in rice memory under drought stress, generating 12 transcriptome datasets. Notably, we identified exon skipping (ES) as the predominant AS type (>80%) in differential alternative splicing (DAS) in response to drought stress. Applying our analysis pipeline to investigate DAS events following drought stress in six other plant species revealed variable ES frequencies ranging from 9.94% to 60.70% depending on the species, suggesting that the relative frequency of DAS types in plants is likely to be species-specific. The dinucleotide sequence at AS splice sites in rice following drought stress was preferentially GC-AG and AT-AC. Since U12-type splicing uses the AT-AC site, this suggests that drought stress may increase U12-type splicing, and thus increase ES frequency. We hypothesize that multiple isoforms derived from exon skipping may be induced by drought stress in rice. We also identified 20 transcription factors and three highly connected hub genes with potential roles in drought memory that may be good targets for plant breeding.

          Highlights

          • We found exon skipping as the predominant AS type in rice under drought stress.

          • We further reanalysis datasets from other species, then proposed a hypothesis “drought-stress related ES” in rice.

          • We found 20 alternative splicing TFs which involved in drought memory and maybe used in crop breeding.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Trimmomatic: a flexible trimmer for Illumina sequence data

            Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Sequence Alignment/Map format and SAMtools

              Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
                Bookmark

                Author and article information

                Contributors
                Journal
                Plant Divers
                Plant Divers
                Plant Diversity
                Kunming Institute of Botany, Chinese Academy of Sciences
                2096-2703
                2468-2659
                13 November 2020
                January 2022
                13 November 2020
                : 44
                : 1
                : 116-125
                Affiliations
                [a ]Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
                [b ]State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
                [c ]Haiyan Engineering & Technology Center, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
                [d ]University of Chinese Academy of Sciences, Beijing, 100049, China
                Author notes
                []Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China. liulia@ 123456mail.kib.ac.cn
                [∗∗ ]Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China. zhangchengjun@ 123456mail.kib.ac.cn
                Article
                S2468-2659(20)30114-1
                10.1016/j.pld.2020.11.004
                8897166
                34746526
                430f8564-1fda-4877-b1e2-abae54f8fd8d
                © 2020 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 18 October 2020
                : 29 October 2020
                : 2 November 2020
                Categories
                Research Paper

                alternative splicing,drought memory,exon skipping
                alternative splicing, drought memory, exon skipping

                Comments

                Comment on this article