13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation

      , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SEC61p is essential for protein translocation across the endoplasmic reticulum membrane of S. cerevisiae. We have found a mammalian homolog that shows more than 50% sequence identity with the yeast protein. Moreover, several regions of SEC61p have significant similarities with corresponding ones of SecYp of bacteria, indicating a strong evolutionary conservation of the mechanism of protein translocation. Mammalian Sec61p, like the yeast protein, is located in the immediate vicinity of nascent polypeptides during their membrane passage. It is tightly associated with membrane-bound ribosomes, suggesting that the nascent chain passes directly from the ribosome into a protein-conducting channel. These results define Sec61p as a ubiquitous key component of the protein translocation apparatus.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein

          An 11S protein composed of six polypeptide chains was previously purified from a salt extract of dog pancreas microsomal membranes and shown to be required for translocation of nascent secretory protein across the microsomal membrane (Wistar and Blobel 1980 Proc. Natl. Acad. Sci. U. S. A. 77:7112-7116). This 11S protein, termed signal recognition protein (SRP), has been shown here (a) to inhibit translation in the wheat germ cell-free system selectively of mRNA for secretory protein (bovine preprolactin) but not of mRNA for cytoplasmic protein (alpha and beta chain of rabbit globin); (b) to bind with relatively low affinity (apparent KD less than 5 x 10(-5)) to monomeric wheat germ ribosomes; and (c) to bind selectively and with 6,000-fold higher affinity (apparent KD less than 8 x 10(-9)) to wheat germ ribosomes engaged in the synthesis of secretory protein but not to those engaged in the synthesis of cytoplasmic protein. Low- and high- affinity binding as well as the selective translation-inhibitory effect were abolished after modification of SRP by N-ethyl maleimide. High- affinity binding and the selective translation-inhibitory effect of SRP were largely abolished when the leucine (Leu) analogue beta-hydroxy leucine was incorporated into the nascent secretory polypeptide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components

            The data presented in this paper demonstrate that native small ribosomal subunits from reticulocytes (containing initiation factors) and large ribosomal subunits derived from free polysomes of reticulocytes by the puromycin-KCl procedures can function with stripped microsomes derived from dog pancreas rough microsomes in a protein-synthesizing system in vitro in response to added IgG light chain mRNA so as to segregate the translation product in a proteolysis- resistant space. No such segregation took place for the translation product of globin mRNA. In addition to their ability to segregate the translation product of a specific heterologous mRNA, native dog pancreas rough microsomes as well as derived stripped microsomes were able to proteolytically process the larger, primary translation product in an apparently correct manner, as evidenced by the identical mol wt of the segregated translation product and the authentic secreted light chain. Segregation as well as proteolytic processing by native and stripped microsomes occurred only during ongoing translation but not after completion of translation. Attempts to solubilize the proteolytic processing activity, presumably localized in the microsomal membrane by detergent treatment, and to achieve proteolytic processing of the completed light chain precursor protein failed. Taken together, these results establish unequivocally that the information for segregation of a translation product is encoded in the mRNA itself, not in the protein- synthesizing apparatus; this provides strong evidence in support of the signal hypothesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A protein-conducting channel in the endoplasmic reticulum.

              The existence of a protein-conducting channel in the endoplasmic reticulum membrane was demonstrated by electrophysiological techniques. Pancreatic rough microsome (RM) vesicles were fused to one side (cis) of a planar lipid bilayer separating two aqueous compartments of 50 mM salt. This exposed the cytoplasmic surface of the RMs, with its attached ribosomes, to the cis chamber. Addition of 100 microM puromycin to the cis side caused a large increase in membrane conductance, presumably the result of puromycin-induced clearance of nascent protein chains from the lumen of protein-conducting channels. When puromycin was added at low concentrations (0.33 microM), single channels of 220 pS were observed. These closed when the salt concentration was raised to levels at which ribosomes detach from the membrane (150-400 mM), indicating that the attached ribosome keeps the channel in an open conformation. A mechanism for a complete cycle of opening and closing of the protein-conducting channel is suggested.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                October 1992
                October 1992
                : 71
                : 3
                : 489-503
                Article
                10.1016/0092-8674(92)90517-G
                1423609
                435e4d12-d68f-4a9d-8375-cd99a4f2c639
                © 1992

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article