71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A protein-conducting channel in the endoplasmic reticulum

      ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The existence of a protein-conducting channel in the endoplasmic reticulum membrane was demonstrated by electrophysiological techniques. Pancreatic rough microsome (RM) vesicles were fused to one side (cis) of a planar lipid bilayer separating two aqueous compartments of 50 mM salt. This exposed the cytoplasmic surface of the RMs, with its attached ribosomes, to the cis chamber. Addition of 100 microM puromycin to the cis side caused a large increase in membrane conductance, presumably the result of puromycin-induced clearance of nascent protein chains from the lumen of protein-conducting channels. When puromycin was added at low concentrations (0.33 microM), single channels of 220 pS were observed. These closed when the salt concentration was raised to levels at which ribosomes detach from the membrane (150-400 mM), indicating that the attached ribosome keeps the channel in an open conformation. A mechanism for a complete cycle of opening and closing of the protein-conducting channel is suggested.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma

          Fractionation of MOPC 41 DL-1 tumors revealed that the mRNA for the light chain of immunoglobulin is localized exclusively in membrane- bound ribosomes. It was shown that the translation product of isolated light chain mRNA in a heterologous protein-synthesizing system in vitro is larger than the authentic secreted light chain; this confirms similar results from several laboratories. The synthesis in vitro of a precursor protein of the light chain is not an artifact of translation in a heterologous system, because it was shown that detached polysomes, isolated from detergent-treated rough microsomes, not only contain nascent light chains which have already been proteolytically processed in vivo but also contain unprocessed nascent light chains. In vitro completion of these nascent light chains thus resulted in the synthesis of some chains having the same mol wt as the authentic secreted light chains, because of completion of in vivo proteolytically processed chains and of other chains which, due to the completion of unprocessed chains, have the same mol wt as the precursor of the light chain. In contrast, completion of the nascent light chains contained in rough microsomes resulted in the synthesis of only processed light chains. Taken together, these results indicate that the processing activity is present in isolated rough microsomes, that it is localized in the membrane moiety of rough microsomes, and, therefore, that it was most likely solubilized during detergent treatment used for the isolation of detached polysomes. Furthermore, these results established that processing in vivo takes place before completion of the nascent chain. The data also indicate that in vitro processing of nascent chains by rough microsomes is dependent on ribosome binding to the membrane. If the latter process is interfered with by aurintricarboxylic acid, rough microsomes also synthesize some unprocessed chains. The data presented in this paper have been interpreted in the light of a recently proposed hypothesis. This hypothesis, referred to as the signal hypothesis, is described in greater detail in the Discussion section.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reconstitution of cell membrane structure in vitro and its transformation into an excitable system.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction of Tetraethylammonium Ion Derivatives with the Potassium Channels of Giant Axons

              A number of compounds related to TEA+ (tetraethylammoniumion) were injected into squid axons and their effects on g K (the potassium conductance) were determined. In most of these ions a quaternary nitrogen is surrounded by three ethyl groups and a fourth group that is very hydrophobic. Several of the ions cause inactivation of g K, a type of ionic gating that is not normally seen in squid axon; i.e., after depolarization g K increases and then spontaneously decreases to a small fraction of its peak value even though the depolarization is maintained. Observations on the mechanism of this gating show that (a) QA (quaternary ammonium) ions only enter K+ channels that have open activation gates (the normal permeability gates). (b) The activation gates of QA-occluded channels do not close readily. (c) Hyperpolarization helps to clear QA ions from the channels. (d) Raising the external K+ concentration also helps to clear QA ions from the channels. Observations (c) and (d) strongly suggest that K+ ions traverse the membrane by way of pores, and they cannot be explained by the usual type of carrier model. The data suggest that a K+ pore has two distinct parts: a wide inner mouth that can accept a hydrated K+ ion or a TEA+-like ion, and a narrower portion that can accept a dehydrated or partially dehydrated K+ ion, but not TEA+.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                May 1991
                May 1991
                : 65
                : 3
                : 371-380
                Article
                10.1016/0092-8674(91)90455-8
                1902142
                8b7fa85e-3187-4902-b864-e41777621938
                © 1991

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article