119
views
0
recommends
+1 Recommend
0 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Reversible Histone H3 Acetylation Cooperates with Mismatch Repair and Replicative Polymerases in Maintaining Genome Stability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations.

          Author Summary

          Mutations strongly predispose humans to cancer and many other diseases. Despite significant progress, we still do not fully understand the molecular mechanisms that protect us from mutations. Human DNA is part of a highly organized complex called chromatin. Chromatin regulates our development, metabolism, and behavior. Special enzymes modify chromatin by the addition and removal of chemical groups. Acetylation and deacetylation of chromatin have been conserved during evolution. The involvement of chromatin and its modifications in the protection of DNA from mutations is poorly understood. The yeast Saccharomyces cerevisiae is an excellent model for studying the connection between chromatin modifications and mutations. Using this model, we found that the deacetylation and acetylation of chromatin on histone H3 lysine 56 are required for preventing a wide range of spontaneous mutations. Future studies will determine whether acetylation and deacetylation of chromatin are involved in protecting DNA from mutations in human cells.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian sirtuins: biological insights and disease relevance.

          Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms and functions of DNA mismatch repair.

            Guo-Min Li (2008)
            DNA mismatch repair (MMR) is a highly conserved biological pathway that plays a key role in maintaining genomic stability. The specificity of MMR is primarily for base-base mismatches and insertion/deletion mispairs generated during DNA replication and recombination. MMR also suppresses homeologous recombination and was recently shown to play a role in DNA damage signaling in eukaryotic cells. Escherichia coli MutS and MutL and their eukaryotic homologs, MutSalpha and MutLalpha, respectively, are key players in MMR-associated genome maintenance. Many other protein components that participate in various DNA metabolic pathways, such as PCNA and RPA, are also essential for MMR. Defects in MMR are associated with genome-wide instability, predisposition to certain types of cancer including hereditary non-polyposis colorectal cancer, resistance to certain chemotherapeutic agents, and abnormalities in meiosis and sterility in mammalian systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast.

              Heterologous markers are important tools required for the molecular dissection of gene function in many organisms, including Saccharomyces cerevisiae. Moreover, the presence of gene families and isoenzymes often makes it necessary to delete more than one gene. We recently introduced a new and efficient gene disruption cassette for repeated use in budding yeast, which combines the heterologous dominant kan(r) resistance marker with a Cre/loxP-mediated marker removal procedure. Here we describe an additional set of four completely heterologous loxP-flanked marker cassettes carrying the genes URA3 and LEU2 from Kluyveromyces lactis, his5(+) from Schizosaccharomyces pombe and the dominant resistance marker ble(r) from the bacterial transposon Tn5, which confers resistance to the antibiotic phleomycin. All five loxP--marker gene--loxP gene disruption cassettes can be generated using the same pair of oligonucleotides and all can be used for gene disruption with high efficiency. For marker rescue we have created three additional Cre expression vectors carrying HIS3, TRP1 or ble(r) as the yeast selection marker. The set of disruption cassettes and Cre expression plasmids described here represents a significant further development of the marker rescue system, which is ideally suited to functional analysis of the yeast genome.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2013
                October 2013
                24 October 2013
                : 9
                : 10
                : e1003899
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
                [2 ]Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
                [3 ]School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
                Duke University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LYK KSL PVS FAK. Performed the experiments: LYK TMM YZ MRN FAK. Analyzed the data: LYK YZ KSL PVS FAK. Contributed reagents/materials/analysis tools: LYK ZS KSL PVS FAK. Wrote the paper: LYK KSL FAK.

                [¤]

                Current address: Department of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America.

                Article
                PGENETICS-D-13-01446
                10.1371/journal.pgen.1003899
                3812082
                24204308
                4406eec5-fad6-4767-8331-20868a9d4886
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 May 2013
                : 6 September 2013
                Page count
                Pages: 16
                Funding
                The research was supported in part by NIH grants GM095758 to FAK, GM082950 to KSL, and ES015869 to PVS, and NSF grant MCB-0818122 to KSL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article