7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Paradigms of Protist/Bacteria Symbioses Affecting Human Health: Acanthamoeba species and Trichomonas vaginalis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ever since the publication of the seminal paper by Lynn Margulis in 1967 proposing the theory of the endosymbiotic origin of organelles, the study of the symbiotic relationships between unicellular eukaryotes and prokaryotes has received ever-growing attention by microbiologists and evolutionists alike. While the evolutionary significance of the endosymbiotic associations within protists has emerged and is intensively studied, the impact of these relationships on human health has been seldom taken into account. Microbial endosymbioses involving human eukaryotic pathogens are not common, and the sexually transmitted obligate parasite Trichomonas vaginalis and the free-living opportunistic pathogen Acanthamoeba represent two unique cases in this regard, to date. The reasons of this peculiarity for T. vaginalis and Acanthamoeba may be due to their lifestyles, characterized by bacteria-rich environments. However, this characteristic does not fully explain the reason why no bacterial endosymbiont has yet been detected in unicellular eukaryotic human pathogens other than in T. vaginalis and Acanthamoeba, albeit sparse and poorly investigated examples of morphological identification of bacteria-like microorganisms associated with Giardia and Entamoeba were reported in the past. In this review article we will present the body of experimental evidences revealing the profound effects of these examples of protist/bacteria symbiosis on the pathogenesis of the microbial species involved, and ultimately their impact on human health.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          The human tumor microbiome is composed of tumor type–specific intracellular bacteria

          Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a particularly rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted functions with tumor types and subtypes, patients’ smoking status, and the response to immunotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016

            Abstract Objective To generate estimates of the global prevalence and incidence of urogenital infection with chlamydia, gonorrhoea, trichomoniasis and syphilis in women and men, aged 15–49 years, in 2016. Methods For chlamydia, gonorrhoea and trichomoniasis, we systematically searched for studies conducted between 2009 and 2016 reporting prevalence. We also consulted regional experts. To generate estimates, we used Bayesian meta-analysis. For syphilis, we aggregated the national estimates generated by using Spectrum-STI. Findings For chlamydia, gonorrhoea and/or trichomoniasis, 130 studies were eligible. For syphilis, the Spectrum-STI database contained 978 data points for the same period. The 2016 global prevalence estimates in women were: chlamydia 3.8% (95% uncertainty interval, UI: 3.3–4.5); gonorrhoea 0.9% (95% UI: 0.7–1.1); trichomoniasis 5.3% (95% UI:4.0–7.2); and syphilis 0.5% (95% UI: 0.4–0.6). In men prevalence estimates were: chlamydia 2.7% (95% UI: 1.9–3.7); gonorrhoea 0.7% (95% UI: 0.5–1.1); trichomoniasis 0.6% (95% UI: 0.4–0.9); and syphilis 0.5% (95% UI: 0.4–0.6). Total estimated incident cases were 376.4 million: 127.2 million (95% UI: 95.1–165.9 million) chlamydia cases; 86.9 million (95% UI: 58.6–123.4 million) gonorrhoea cases; 156.0 million (95% UI: 103.4–231.2 million) trichomoniasis cases; and 6.3 million (95% UI: 5.5–7.1 million) syphilis cases. Conclusion Global estimates of prevalence and incidence of these four curable sexually transmitted infections remain high. The study highlights the need to expand data collection efforts at country level and provides an initial baseline for monitoring progress of the World Health Organization global health sector strategy on sexually transmitted infections 2016–2021.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms.

              Inflammation is a fundamental innate immune response to perturbed tissue homeostasis. Chronic inflammatory processes affect all stages of tumour development as well as therapy. In this Review, we outline the principal cellular and molecular pathways that coordinate the tumour-promoting and tumour-antagonizing effects of inflammation and we discuss the crosstalk between cancer development and inflammatory processes. In addition, we discuss the recently suggested role of commensal microorganisms in inflammation-induced cancer and we propose that understanding this microbial influence will be crucial for targeted therapy in modern cancer treatment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                07 January 2021
                2020
                : 11
                : 616213
                Affiliations
                [1] 1School of Health and Life Sciences, University of West Scotland , Paisley, United Kingdom
                [2] 2Dipartimento di Scienze Biomediche, Università degli Studi di Sassari , Sassari, Italy
                [3] 3Mediterrenean Center for Disease Control , Sassari, Italy
                Author notes

                Edited by: Alexei Yu. Kostygov, University of Ostrava, Czechia

                Reviewed by: Julia Walochnik, Medical University of Vienna, Austria; Ursula Fürnkranz, Medical University of Vienna, Austria

                *Correspondence: Daniele Dessì, danieled@ 123456uniss.it

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.616213
                7817646
                33488560
                46124eb6-11a5-4007-8b76-45900f3d6fb0
                Copyright © 2021 Henriquez, Mooney, Bandel, Giammarini, Zeroual, Fiori, Margarita, Rappelli and Dessì.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 October 2020
                : 07 December 2020
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 170, Pages: 18, Words: 0
                Categories
                Microbiology
                Review

                Microbiology & Virology
                acanthamoeba,microbial pathogenesis,mycoplasma,infection,trichomonas vaginalis,microbial symbiosis

                Comments

                Comment on this article