17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A benchmark of batch-effect correction methods for single-cell RNA sequencing data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Large-scale single-cell transcriptomic datasets generated using different technologies contain batch-specific systematic variations that present a challenge to batch-effect removal and data integration. With continued growth expected in scRNA-seq data, achieving effective batch integration with available computational resources is crucial. Here, we perform an in-depth benchmark study on available batch correction methods to determine the most suitable method for batch-effect removal.

          Results

          We compare 14 methods in terms of computational runtime, the ability to handle large datasets, and batch-effect correction efficacy while preserving cell type purity. Five scenarios are designed for the study: identical cell types with different technologies, non-identical cell types, multiple batches, big data, and simulated data. Performance is evaluated using four benchmarking metrics including kBET, LISI, ASW, and ARI. We also investigate the use of batch-corrected data to study differential gene expression.

          Conclusion

          Based on our results, Harmony, LIGER, and Seurat 3 are the recommended methods for batch integration. Due to its significantly shorter runtime, Harmony is recommended as the first method to try, with the other methods as viable alternatives.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor

          Single-cell RNA sequencing (scRNA-seq) is widely used to profile the transcriptome of individual cells. This provides biological resolution that cannot be matched by bulk RNA sequencing, at the cost of increased technical noise and data complexity. The differences between scRNA-seq and bulk RNA-seq data mean that the analysis of the former cannot be performed by recycling bioinformatics pipelines for the latter. Rather, dedicated single-cell methods are required at various steps to exploit the cellular resolution while accounting for technical noise. This article describes a computational workflow for low-level analyses of scRNA-seq data, based primarily on software packages from the open-source Bioconductor project. It covers basic steps including quality control, data exploration and normalization, as well as more complex procedures such as cell cycle phase assignment, identification of highly variable and correlated genes, clustering into subpopulations and marker gene detection. Analyses were demonstrated on gene-level count data from several publicly available datasets involving haematopoietic stem cells, brain-derived cells, T-helper cells and mouse embryonic stem cells. This will provide a range of usage scenarios from which readers can construct their own analysis pipelines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure.

            Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              A Single-Cell Transcriptome Atlas of the Human Pancreas

              Summary To understand organ function, it is important to have an inventory of its cell types and of their corresponding marker genes. This is a particularly challenging task for human tissues like the pancreas, because reliable markers are limited. Hence, transcriptome-wide studies are typically done on pooled islets of Langerhans, obscuring contributions from rare cell types and of potential subpopulations. To overcome this challenge, we developed an automated platform that uses FACS, robotics, and the CEL-Seq2 protocol to obtain the transcriptomes of thousands of single pancreatic cells from deceased organ donors, allowing in silico purification of all main pancreatic cell types. We identify cell type-specific transcription factors and a subpopulation of REG3A-positive acinar cells. We also show that CD24 and TM4SF4 expression can be used to sort live alpha and beta cells with high purity. This resource will be useful for developing a deeper understanding of pancreatic biology and pathophysiology of diabetes mellitus.
                Bookmark

                Author and article information

                Contributors
                chen_jinmiao@immunol.a-star.edu.sg
                Journal
                Genome Biol
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1474-7596
                1474-760X
                16 January 2020
                16 January 2020
                2020
                : 21
                : 12
                Affiliations
                ISNI 0000 0004 0387 2429, GRID grid.430276.4, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), ; 8A Biomedical Grove, Immunos Building, Level 3, Singapore, 138648 Singapore
                Author information
                http://orcid.org/0000-0001-7547-6423
                Article
                1850
                10.1186/s13059-019-1850-9
                6964114
                31948481
                466322dc-10b7-4955-b2cc-ba8db4ca97b8
                © The Author(s). 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 May 2019
                : 3 October 2019
                Funding
                Funded by: Singapore Immunology Network
                Award ID: NA
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Genetics
                single-cell rna-seq,batch correction,batch effect,integration,differential gene expression

                Comments

                Comment on this article