45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The “gain” represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The “loss” represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00239-006-0284-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          The origin of the genetic code.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Universal rules and idiosyncratic features in tRNA identity.

            Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asymmetrical directional mutation pressure in the mitochondrial genome of mammals.

              The base composition of 25 complete mammalian mitochondrial (mt) genomes has been analyzed taking into account all three codon positions (P1230 and fourfold degenerate sites (P4FD) of H-strand genes. In the nontranscribed L strand, G is the less represented base and A is the most represented one in all cases, while C and T differ among species. H-strand protein-coding genes show an asymmetric distribution of the four bases between the two strands. The asymmetry indexes AT and GC skews on P4FD are much higher than those on P123, suggesting the existence of asymmetrical directional mutation pressure. Relationships between the compositional features and transcription of replication processes have been investigated in order to find a possible mechanism that could explain the origin of this asymmetry. AT and GC skews, the base composition in fourfold degenerate sites, and the number of variable sites for each gene are significantly correlated with the duration of single-stranded state of the H-stranded genes during replication. We tested different replication-related hypotheses, such as the existence of biased dNTP pools, gamma DNA polymerase mispairing, and the asymmetric replication itself. Most of them failed to explain the observed results, hydrolytic deaminations being the only one in agreement with our data. Thus, we hypothesize that one of the crucial processes for the origin of asymmetric and biased base composition of mammalian mitochondrial genomes is the spontaneous deamination of C and A in the H strand during replication.
                Bookmark

                Author and article information

                Contributors
                higgsp@mcmaster.ca
                Journal
                J Mol Evol
                Journal of Molecular Evolution
                Springer-Verlag (New York )
                0022-2844
                1432-1432
                29 May 2007
                June 2007
                : 64
                : 6
                : 662-688
                Affiliations
                [1 ]Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
                [2 ]Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 Canada
                Article
                284
                10.1007/s00239-006-0284-7
                1894752
                17541678
                476f1fef-54a6-474c-94ba-833d5f1e665f
                © Springer Science+Business Media, LLC 2007
                History
                : 17 April 2006
                : 7 March 2007
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC 2007

                Evolutionary Biology
                codon disappearance mechanism,unassigned codon mechanism,codon reassignment,ambiguous intermediate mechanism,mitochondrial genetic codes

                Comments

                Comment on this article