3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Three branches to rule them all? UPR signalling in response to chemically versus misfolded proteins-induced ER stress : Chemical ER stress versus misfolded protein-induced ER stress

      1 , 1 , 2
      Biology of the Cell
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The integrated stress response.

          In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs.

            ATF6 is a membrane-bound transcription factor that activates genes in the endoplasmic reticulum (ER) stress response. When unfolded proteins accumulate in the ER, ATF6 is cleaved to release its cytoplasmic domain, which enters the nucleus. Here, we show that ATF6 is processed by Site-1 protease (S1P) and Site-2 protease (S2P), the enzymes that process SREBPs in response to cholesterol deprivation. ATF6 processing was blocked completely in cells lacking S2P and partially in cells lacking S1P. ATF6 processing required the RxxL and asparagine/proline motifs, known requirements for S1P and S2P processing, respectively. Cells lacking S2P failed to induce GRP78, an ATF6 target, in response to ER stress. ATF6 processing did not require SCAP, which is essential for SREBP processing. We conclude that S1P and S2P are required for the ER stress response as well as for lipid synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks.

              Using genome-wide approaches, we have elucidated the regulatory circuitry governed by the XBP1 transcription factor, a key effector of the mammalian unfolded protein response (UPR), in skeletal muscle and secretory cells. We identified a core group of genes involved in constitutive maintenance of ER function in all cell types and tissue- and condition-specific targets. In addition, we identified a cadre of unexpected targets that link XBP1 to neurodegenerative and myodegenerative diseases, as well as to DNA damage and repair pathways. Remarkably, we found that XBP1 regulates functionally distinct targets through different sequence motifs. Further, we identified Mist1, a critical regulator of differentiation, as an important target of XBP1, providing an explanation for developmental defects associated with XBP1 loss of function. Our results provide a detailed picture of the regulatory roadmap governed by XBP1 in distinct cell types as well as insight into unexplored functions of XBP1.
                Bookmark

                Author and article information

                Journal
                Biology of the Cell
                Biol. Cell
                Wiley
                02484900
                September 2018
                September 2018
                July 29 2018
                : 110
                : 9
                : 197-204
                Affiliations
                [1 ]Università della Svizzera italiana (USI); Faculty of Biomedical Sciences; Institute for Research in Biomedicine; Bellinzona Switzerland
                [2 ]École Polytechnique Fédérale de Lausanne; School of Life Sciences; Lausanne Switzerland
                Article
                10.1111/boc.201800029
                48a44213-5353-489e-b6bd-b04b7b0c0eb0
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article