Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Defining NELF-E RNA Binding in HIV-1 and Promoter-Proximal Pause Regions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The four-subunit Negative Elongation Factor (NELF) is a major regulator of RNA Polymerase II (Pol II) pausing. The subunit NELF-E contains a conserved RNA Recognition Motif (RRM) and is proposed to facilitate Poll II pausing through its association with nascent transcribed RNA. However, conflicting ideas have emerged for the function of its RNA binding activity. Here, we use in vitro selection strategies and quantitative biochemistry to identify and characterize the consensus NELF-E binding element (NBE) that is required for sequence specific RNA recognition (NBE: CUGAGGA(U) for Drosophila). An NBE-like element is present within the loop region of the transactivation-response element (TAR) of HIV-1 RNA, a known regulatory target of human NELF-E. The NBE is required for high affinity binding, as opposed to the lower stem of TAR, as previously claimed. We also identify a non-conserved region within the RRM that contributes to the RNA recognition of Drosophila NELF-E. To understand the broader functional relevance of NBEs, we analyzed promoter-proximal regions genome-wide in Drosophila and show that the NBE is enriched +20 to +30 nucleotides downstream of the transcription start site. Consistent with the role of NELF in pausing, we observe a significant increase in NBEs among paused genes compared to non-paused genes. In addition to these observations, SELEX with nuclear run-on RNA enrich for NBE-like sequences. Together, these results describe the RNA binding behavior of NELF-E and supports a biological role for NELF-E in promoter-proximal pausing of both HIV-1 and cellular genes.

          Author Summary

          RNA polymerase II (Pol II) is a molecular machine that is responsible for transcribing all protein coding genes in the eukaryotic genome. Transcription by Pol II is a highly regulated process consisting of several rate-limiting steps. During transcription elongation, a number of transcription factors are essential to modulate Pol II activity. One of these factors is the Negative Elongation Factor (NELF), and it plays a major role in promoter-proximal pausing, a widespread phenomenon during early transcription elongation. NELF-E, a protein subunit of the NELF complex contains a conserved RNA binding domain that is thought to regulate transcription through its interaction with newly transcribed RNA made by Pol II. However, the function of the RNA binding activity of NELF-E remains unresolved due to prior conflicting studies. Here, we clarify the RNA binding properties of NELF-E and provide insight into how this protein might facilitate promoter-proximal pausing of Pol II in transcription. Moreover, we identify the precise region of NELF-E binding in one of its known regulatory targets, HIV-1. Taken together, the results presented indicate a dynamic interplay between NELF and specific RNA sequences around the promoter pause region to modulate early transcription elongation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Amino acid substitution matrices from protein blocks.

          Methods for alignment of protein sequences typically measure similarity by using a substitution matrix with scores for all possible exchanges of one amino acid with another. The most widely used matrices are based on the Dayhoff model of evolutionary rates. Using a different approach, we have derived substitution matrices from about 2000 blocks of aligned sequence segments characterizing more than 500 groups of related proteins. This led to marked improvements in alignments and in searches using queries from each of the groups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The UCSC Genome Browser database: update 2011

            The University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online access to a database of genomic sequence and annotation data for a wide variety of organisms. The Browser also has many tools for visualizing, comparing and analyzing both publicly available and user-generated genomic data sets, aligning sequences and uploading user data. Among the features released this year are a gene search tool and annotation track drag-reorder functionality as well as support for BAM and BigWig/BigBed file formats. New display enhancements include overlay of multiple wiggle tracks through use of transparent coloring, options for displaying transformed wiggle data, a ‘mean+whiskers’ windowing function for display of wiggle data at high zoom levels, and more color schemes for microarray data. New data highlights include seven new genome assemblies, a Neandertal genome data portal, phenotype and disease association data, a human RNA editing track, and a zebrafish Conservation track. We also describe updates to existing tracks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression.

              The RNA recognition motif (RRM), also known as RNA-binding domain (RBD) or ribonucleoprotein domain (RNP) is one of the most abundant protein domains in eukaryotes. Based on the comparison of more than 40 structures including 15 complexes (RRM-RNA or RRM-protein), we reviewed the structure-function relationships of this domain. We identified and classified the different structural elements of the RRM that are important for binding a multitude of RNA sequences and proteins. Common structural aspects were extracted that allowed us to define a structural leitmotif of the RRM-nucleic acid interface with its variations. Outside of the two conserved RNP motifs that lie in the center of the RRM beta-sheet, the two external beta-strands, the loops, the C- and N-termini, or even a second RRM domain allow high RNA-binding affinity and specific recognition. Protein-RRM interactions that have been found in several structures reinforce the notion of an extreme structural versatility of this domain supporting the numerous biological functions of the RRM-containing proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2014
                January 2014
                16 January 2014
                : 10
                : 1
                : e1004090
                Affiliations
                [1 ]Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
                [2 ]Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
                [3 ]School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
                Friedrich Miescher Institute for Biomedical Research, Switzerland
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JMP JTL ROS. Performed the experiments: JMP ROS. Analyzed the data: JMP HK CTW BSW. Contributed reagents/materials/analysis tools: AO KS. Wrote the paper: JMP CTW HK ROS. Revisions of Manuscript: JMP CTW ROS HK BSW AO KS DS HGC JTL.

                Article
                PGENETICS-D-13-01801
                10.1371/journal.pgen.1004090
                3894171
                24453987
                4937ccb4-71ec-496e-8049-e7fb4d2b5203
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 July 2013
                : 22 November 2013
                Page count
                Pages: 11
                Funding
                This work was supported by the National Institute of Health grants GM025232 and 1R01GM090320. JMP was supported by an American Cancer Society Postdoctoral Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                RNA
                Proteins
                Protein Interactions
                Recombinant Proteins
                Regulatory Proteins
                Biomacromolecule-Ligand Interactions
                Biotechnology
                Genetics
                Gene Expression
                DNA transcription
                Genomics
                Genome Analysis Tools
                Molecular Cell Biology
                Gene Expression
                DNA transcription

                Genetics
                Genetics

                Comments

                Comment on this article