8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased drought and extreme events over continental United States under high emissions scenario

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The frequency, severity, and extent of climate extremes in future will have an impact on human well-being, ecosystems, and the effectiveness of emissions mitigation and carbon sequestration strategies. The specific objectives of this study were to downscale climate data for US weather stations and analyze future trends in meteorological drought and temperature extremes over continental United States (CONUS). We used data from 4161 weather stations across the CONUS to downscale future precipitation projections from three Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase Six (CMIP6), specifically for the high emission scenario SSP5 8.5. Comparing historic observations with climate model projections revealed a significant bias in total annual precipitation days and total precipitation amounts. The average number of annual precipitation days across CONUS was projected to be 205 ± 26, 184 ± 33, and 181 ± 25 days in the BCC, CanESM, and UKESM models, respectively, compared to 91 ± 24 days in the observed data. Analyzing the duration of drought periods in different ecoregions of CONUS showed an increase in the number of drought months in the future (2023–2052) compared to the historical period (1989–2018). The analysis of precipitation and temperature changes in various ecoregions of CONUS revealed an increased frequency of droughts in the future, along with longer durations of warm spells. Eastern temperate forests and the Great Plains, which encompass the majority of CONUS agricultural lands, are projected to experience higher drought counts in the future. Drought projections show an increasing trend in future drought occurrences due to rising temperatures and changes in precipitation patterns. Our high-resolution climate projections can inform policy makers about the hotspots and their anticipated future trajectories.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          An Overview of CMIP5 and the Experiment Design

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

            Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A review of drought concepts

                Bookmark

                Author and article information

                Contributors
                sgautam@sandia.gov
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 December 2023
                6 December 2023
                2023
                : 13
                : 21503
                Affiliations
                [1 ]Bioscience Division, Sandia National Laboratory, ( https://ror.org/01apwpt12) Livermore, CA 94550 USA
                [2 ]GRID grid.184769.5, ISNI 0000 0001 2231 4551, Joint BioEnergy Institute, , Lawrence Berkeley National Laboratory, ; Emeryville, CA 94608 USA
                [3 ]Energy Analysis and Environmental Impact Division, Lawrence Berkeley National Laboratory, ( https://ror.org/02jbv0t02) Berkeley, CA 94720 USA
                [4 ]Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, ( https://ror.org/02jbv0t02) Berkeley, CA 94720 USA
                [5 ]GRID grid.47840.3f, ISNI 0000 0001 2181 7878, Energy and Biosciences Institute, , University of California, ; Berkeley, CA 94720 USA
                [6 ]Agricultural Science Center, New Mexico State University, ( https://ror.org/00hpz7z43) Las Cruces, NM 88003 USA
                Article
                48650
                10.1038/s41598-023-48650-z
                10700340
                38057376
                497a866d-e60b-4e06-aaf5-15b97e001e48
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 June 2023
                : 29 November 2023
                Funding
                Funded by: US Department of Energy, Office of Science, Office of Biological and Environmental Research
                Award ID: Contract DE-AC02-05CH11231
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Uncategorized
                environmental impact,climate and earth system modelling,climate-change impacts,projection and prediction

                Comments

                Comment on this article