5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and integration analysis of a novel prognostic signature associated with cuproptosis-related ferroptosis genes and relevant lncRNA regulatory axis in lung adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung adenocarcinoma (LUAD) is a highly prevalent malignancy worldwide, and its clinical prognosis assessment and treatment is a major research direction. Both ferroptosis and cuproptosis are novel forms of cell death and are considered to be important factors involved in cancer progression. To further understand the correlation between the cuproptosis-related ferroptosis genes (CRFGs) and the prognosis of LUAD, we explore the molecular mechanisms related to the development of the disease. We constructed a prognostic signature containing 13 CRFGs, which, after grouping based on risk score, revealed that the LUAD high-risk group exhibited poor prognosis. Nomogram confirmed that it could be an independent risk factor for LUAD, and ROC curves and DCA validated the validity of the model. Further analysis showed that the three prognostic biomarkers (LIFR, CAV1, TFAP2A) were significantly correlated with immunization. Meanwhile, we found that a LINC00324/miR-200c-3p/TFAP2A regulatory axis could be involved in the progression of LUAD. In conclusion, our report reveals that CRFGs are well correlated with LUAD and provide new ideas for the construction of clinical prognostic tools, immunotherapy, and targeted therapy for LUAD.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cancer statistics, 2022

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: an iron-dependent form of nonapoptotic cell death.

            Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

              Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 March 2023
                03 March 2023
                : 15
                : 5
                : 1543-1563
                Affiliations
                [1 ]The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
                [2 ]The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
                [3 ]The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
                Author notes
                [*]

                Equal contribution

                [#]

                Share first authorship

                Correspondence to: Tianyue Wang; email: 202012210908010@zcmu.edu.cn
                Article
                204561 204561
                10.18632/aging.204561
                10042693
                36881404
                4b7989b7-1cf2-4df4-ba12-e5b0ffb5a6b1
                Copyright: © 2023 Wang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 December 2022
                : 20 February 2023
                Categories
                Research Paper

                Cell biology
                ferroptosis,cuproptosis,prognostic signature,lncrna,lung adenocarcinoma
                Cell biology
                ferroptosis, cuproptosis, prognostic signature, lncrna, lung adenocarcinoma

                Comments

                Comment on this article