1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Growing Kidney in the Frog

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An understanding of the regulation of kidney development has increased dramatically in the past decade. The pronephros, mesonephros, and metanephros represent three distinct renal organs that function, in succession, as the vertebrate excretory system during development of the kidney. These three organ systems are derived from the intermediate mesoderm and develop in a well-defined temporal and spatial sequence. The pronephros, which consists of a tubule, duct and glomus, is established first and is the simplest of the excretory organs in vertebrates. Xenopus pronephros serves as an ideal model for investigating organogenesis and development of renal function in vertebrates. In this article, we highlight the advantages of Xenopus for analyzing kidney organogenesis and the latest research in pronephros development.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation.

          Vertebrate gastrulation involves the specification and coordinated movement of large populations of cells that give rise to the ectodermal, mesodermal and endodermal germ layers. Although many of the genes involved in the specification of cell identity during this process have been identified, little is known of the genes that coordinate cell movement. Here we show that the zebrafish silberblick (slb) locus encodes Wnt11 and that Slb/Wnt11 activity is required for cells to undergo correct convergent extension movements during gastrulation. In the absence of Slb/Wnt11 function, abnormal extension of axial tissue results in cyclopia and other midline defects in the head. The requirement for Slb/Wnt11 is cell non-autonomous, and our results indicate that the correct extension of axial tissue is at least partly dependent on medio-lateral cell intercalation in paraxial tissue. We also show that the slb phenotype is rescued by a truncated form of Dishevelled that does not signal through the canonical Wnt pathway, suggesting that, as in flies, Wnt signalling might mediate morphogenetic events through a divergent signal transduction cascade. Our results provide genetic and experimental evidence that Wnt activity in lateral tissues has a crucial role in driving the convergent extension movements underlying vertebrate gastrulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation.

            Epithelial-mesenchymal transformation (EMT) plays an important role in embryonic development and tumorigenesis and has been described in organ remodeling during fibrogenesis. In the kidney, EMT can be induced efficiently in cultured proximal tubular epithelium by coincubation of transforming growth factor (TGF)-beta1 and epidermal growth factor (EGF). Recently, we also have observed overexpression of basic fibroblast growth factor-2 (FGF-2) protein and mRNA in human kidneys with marked interstitial fibrosis. The aims of the present study were to compare the effects of FGF-2 as a facilitator of EMT in tubular epithelial cells with EGF and TGF-beta1. We analyzed the morphogenic effects of the three cytokines on four different aspects of EMT: cell motility, expression and regulation of cellular markers, synthesis and secretion of extracellular matrix (ECM) proteins as well as matrix degradation. Cell motility was studied by a migration assay and cell differentiation markers were analyzed by immunofluorescence and immunoblots. In addition, regulation of the epithelial adhesion molecule E-cadherin and fibroblast-specific protein 1 (FSP1) were analyzed by luciferase reporter constructs and stable transfections. ELISAs for collagen types I and IV and fibronectin were used for ECM synthesis, and zymograms were utilized for analysis of matrix degradation. FGF-2 induced cell motility across a tubular basement membrane in two tubular cell lines. All three cytokines induced the expression of vimentin and FSP1, but only FGF-2 and TGF-beta1 reduced cytokeratin expression by immunofluorescence. These effects were most demonstrable in the distal tubular epithelial cell line and were confirmed by immunoblot analyses. Expression of E-cadherin was reduced by 61.5 +/- 3.3% and expression of cytokeratin by 91 +/- 0.5% by TGF-beta1 plus FGF-2. Conversely, the mesenchymal markers alpha-smooth muscle actin (SMA) and FSP1 were induced with FGF-2 by 2.2 +/- 0.1-fold and 6.8 +/- 0.9-fold, respectively. Interestingly, de novo expression of the mesenchymal marker OB-cadherin was induced only by FGF-2 and EGF but not by TGF-beta1. All three cytokines stimulated FSP1 and decreased E-cadherin promoter activity. FGF-2 also induced intracellular fibronectin synthesis but not secretion, the latter of which was stimulated exclusively by TGF-beta1. Finally, zymographic analyses demonstrated that FGF-2 induced MMP-2 activity by 2.6 +/- 0.5-fold and MMP-9 activity by 2.4 +/- 0.1-fold, providing a mechanism for basement membrane disintegration and migratory access of transforming epithelium to the interstitium. FGF-2 makes an important contribution to the mechanisms of EMT by stimulating microenvironmental proteases essential for disaggregation of organ-based epithelial units. Furthermore, the expression of epithelial and mesenchymal marker proteins seems to be affected at the promoter level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development.

              Reciprocal cell-cell interactions between the ureteric epithelium and the metanephric mesenchyme are needed to drive growth and differentiation of the embryonic kidney to completion. Branching morphogenesis of the Wolffian duct derived ureteric bud is integral in the generation of ureteric tips and the elaboration of the collecting duct system. Wnt11, a member of the Wnt superfamily of secreted glycoproteins, which have important regulatory functions during vertebrate embryonic development, is specifically expressed in the tips of the branching ureteric epithelium. In this work, we explore the role of Wnt11 in ureteric branching and use a targeted mutation of the Wnt11 locus as an entrance point into investigating the genetic control of collecting duct morphogenesis. Mutation of the Wnt11 gene results in ureteric branching morphogenesis defects and consequent kidney hypoplasia in newborn mice. Wnt11 functions, in part, by maintaining normal expression levels of the gene encoding glial cell-derived neurotrophic factor (Gdnf). Gdnf encodes a mesenchymally produced ligand for the Ret tyrosine kinase receptor that is crucial for normal ureteric branching. Conversely, Wnt11 expression is reduced in the absence of Ret/Gdnf signaling. Consistent with the idea that reciprocal interaction between Wnt11 and Ret/Gdnf regulates the branching process, Wnt11 and Ret mutations synergistically interact in ureteric branching morphogenesis. Based on these observations, we conclude that Wnt11 and Ret/Gdnf cooperate in a positive autoregulatory feedback loop to coordinate ureteric branching by maintaining an appropriate balance of Wnt11-expressing ureteric epithelium and Gdnf-expressing mesenchyme to ensure continued metanephric development.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2006
                June 2006
                22 March 2006
                : 103
                : 3
                : e81-e85
                Affiliations
                aInternational Cooperative Research Program (ICORP) of Japan Science and Technology Agency (JST), and bDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
                Article
                92192 Nephron Exp Nephrol 2006;103:e81–e85
                10.1159/000092192
                16554664
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, References: 29, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/92192
                Categories
                Minireview

                Comments

                Comment on this article