5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Childhood Obesity on Skeletal Health and Development

      review-article
      *
      Journal of Obesity & Metabolic Syndrome
      Korean Society for the Study of Obesity
      Bone, Child, Obesity, Fracture, Marrow, Hormone

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased risk of fracture identified in obese children has led to a focus on the relationship between fat, bone, and the impact of obesity during skeletal development. Early studies have suggested that despite increased fracture risk, obese children have a higher bone mass. However, body size corrections applied to account for wide variations in size between children led to the finding that obese children have a lower total body and regional bone mass relative to their body size. Advances in skeletal imaging have shifted the focus from quantity of bone in obese children to evaluating the changes in bone microarchitecture that result in a change in bone quality and strength. The findings suggest that bone strength in the appendicular skeleton does not appropriately adapt to an increase in body size which results in a mismatch between bone strength and force from falls. Recent evidence points to differing influences of fat compartments on skeletal development—visceral fat may have a negative impact on bone which may be related to the associated adverse metabolic environment, while marrow adipose tissue may have an independent effect on trabecular bone development in obese children. The role of brown fat has received recent attention, demonstrating differences in the influence on bone mass between white and brown adipose tissues. Obesity results in a shift in growth and pubertal hormones as well as influences bone development through the altered release of adipokines. The change in the hormonal milieu provides an important insight into the skeletal changes observed in childhood obesity.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Growth hormone and the insulin-like growth factor system in myogenesis.

          It is very clear that the GH-IGF axis plays a major role in controlling the growth and differentiation of skeletal muscles, as it does virtually all of the tissues in the animal body. One aspect of this control is unquestioned: circulating GH acts on the liver to stimulate expression of the IGF-I and IGFBP3 genes, substantially increasing the levels of these proteins in the circulation. It also seems that GH stimulates expression of IGF-I genes in skeletal muscle, although there are a number of cases in which skeletal muscle IGF-I expression is elevated in the absence of GH. It is substantially less clear that GH acts directly on skeletal muscle to stimulate its growth; the presence of GH receptor mRNA in skeletal muscle is well established, but most investigators have been unsuccessful in demonstrating any specific binding of GH to skeletal muscle or to myoblasts in culture. It has been equally difficult to show direct actions of GH on cultured muscle cells; the only positive report concludes that the early insulin-like effects of GH can result from direct interactions between GH and isolated muscle cells. The effects of the IGFs on skeletal muscle are much clearer. It is well established by studies in a number of laboratories on a variety of systems that IGFs stimulate many anabolic responses in myoblasts, as they do in other cell types. IGFs have the unusual property of stimulating both proliferation and differentiation of myoblasts, responses that are generally believed to be mutually exclusive; in myoblasts, they are in fact temporally separated. The stimulation of differentiation by IGF-I is (at least in part) a result of substantially increased levels of the mRNA for myogenin, the member of the MyoD family most directly associated with terminal myogenesis. As levels of myogenin mRNA rise, those of myf-5 mRNA (the only other member of the MyoD family expressed significantly in L6 myoblasts) fall dramatically, although myf-5 expression is required for the initial elevation of myogenin. The effects of IGFs are significantly modulated by IGFBPs secreted by myoblasts in serum-free medium, inhibitory IG-FBPs-4 and -6 are expressed and secreted by L6A1 myoblasts, while expression of IGFBP-5 rises dramatically as differentiation proceeds. Other myoblasts also secrete IGFBP-2. Even if exogenous IGFs are not added to the low-serum "differentiation" medium, myoblasts express sufficient amounts of autocrine IGF-II to stimulate myogenesis after a period of time; some myogenic cell lines, (such as Sol 8) are so active in expressing the IGF-II gene that it is not possible to demonstrate effects of exogenous IGFs. This autocrine expression of IGFs is by no means unique to skeletal muscle cells; indeed, it is so widely seen in cells responding to mitogenic stimuli that we suggest that IGFs can be viewed as extracellular second messengers that mediate most, if not all, such actions of agents that stimulate cell proliferation. The component of serum that suppresses IGF-II gene expression under "growth" conditions appears to be the IGFs themselves, which exhibit a very high potency in the feedback inhibition of IGF-II expression. In addition, IGFs have effects on the expression of other genes related to differentiation. Treatment of L6A1 cell with IGFs suppresses their expression of the myogenesis-inhibiting TGF beta s with a time course consistent with an initial proliferative step followed by differentiation, i.e. expression is first increased and then very substantially decreased. It is not established that this plays a role in control of differentiation, but experiments with FGF antisense constructs suggests that this may well be the case. Until recently, IGFs were the only circulating agents known to stimulate myoblast differentiation, in contrast to the relatively large number of growth factors that inhibit the process. It is now clear that thyroid hormones and RA also stimulate myogenesis, and that IL-15 enhances the stimulatory eff
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes.

            Both bone mass and serum leptin levels are increased in obesity. Because osteoblasts and adipocytes arise from a common precursor in bone marrow, we assessed the effects of human recombinant leptin on a conditionally immortalized human marrow stromal cell line, hMS2-12, with the potential to differentiate to either the osteoblast or adipocyte phenotypes. By RT-PCR and Western immunoblot analysis, the hMS2-12 cells expressed messenger RNA (mRNA) and protein for the leptin receptor. Leptin did not affect hMS2-12 cell proliferation, but resulted in dose- and time-dependent increases in mRNA and protein levels of alkaline phosphatase, type I collagen, and osteocalcin, and in a 59% increase in mineralized matrix. Leptin increased mRNA levels of lipoprotein lipase at 3 days, but decreased mRNA levels of adipsin and leptin at 9 days and decreased lipid droplet formation by 50%. Leptin did not affect the expression of Cbfa1 or peroxisome proliferator-activated receptor-gamma2, transcription factors involved in commitment to the osteoblast and adipocyte pathways, respectively. Thus, leptin acts on human marrow stromal cells to enhance osteoblast differentiation and to inhibit adipocyte differentiation. Our data support the hypothesis that leptin is a previously unrecognized, physiological regulator of these two differentiation pathways, acting primarily on maturation of stromal cells into both lineages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human brown adipose tissue.

              The BAT organ is unique in that it has evolved to safely dissipate large amounts of chemical energy--a quality that might be harnessed to help humans deal with a dangerously hypercaloric environment and still remain in good health. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Obes Metab Syndr
                J Obes Metab Syndr
                Journal of Obesity & Metabolic Syndrome
                Korean Society for the Study of Obesity
                2508-6235
                2508-7576
                March 2019
                30 March 2019
                : 28
                : 1
                : 4-17
                Affiliations
                Academic Unit of Child Health, The University of Sheffield, Sheffield, UK
                Author notes
                [* ]Corresponding author: Paul Dimitri, https://orcid.org/0000-0001-7625-6713, Academic Unit of Child Health, The University of Sheffield, Sheffield Children’s NHS Foundation Trust, Western Bank, Sheffield S10 2TH, UK, Tel: +44-271-7118, Fax: +44-275-5364, E-mail: paul.dimitri@ 123456sch.nhs.uk
                Article
                jomes-28-004
                10.7570/jomes.2019.28.1.4
                6484936
                31089575
                4c3637e2-7018-410e-85c5-6d2c54269937
                Copyright © 2019 Korean Society for the Study of Obesity

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2019
                : 24 January 2019
                : 18 February 2019
                Categories
                Review

                bone,child,obesity,fracture,marrow,hormone
                bone, child, obesity, fracture, marrow, hormone

                Comments

                Comment on this article