63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Infection of malaria ( Anopheles gambiae s.s.) and filariasis ( Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus against tsetse flies (Diptera: Glossinidae) we investigated the potency of this fungus as a biological control agent for adult malaria and filariasis vector mosquitoes.

          Methods

          In the laboratory, both sexes of Anopheles gambiae sensu stricto and Culex quinquefasciatus were passively contaminated with dry conidia of Metarhizium anisopliae. Pathogenicity of this fungus for An. gambiae was further tested for varying exposure times and different doses of oil-formulated conidia.

          Results

          Comparison of Gompertz survival curves and LT 50 values for treated and untreated specimens showed that, for both species, infected mosquitoes died significantly earlier (p < 0.0001) than uninfected control groups. No differences in LT 50 values were found for different exposure times (24, 48 hrs or continuous exposure) of An. gambiae to dry conidia. Exposure to oil-formulated conidia (doses ranging from 1.6 × 10 7 to 1.6 × 10 10 conidia/m 2) gave LT 50 values of 9.69 ± 1.24 (lowest dose) to 5.89 ± 0.35 days (highest dose), with infection percentages ranging from 4.4–83.7%.

          Conclusion

          Our study marks the first to use an entomopathogenic fungus against adult Afrotropical disease vectors. Given its high pathogenicity for both adult Anopheles and Culex mosquitoes we recommend development of novel targeted indoor application methods for the control of endophagic host-seeking females.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Insecticide-treated bed nets and curtains for preventing malaria.

          C Lengeler (2004)
          Malaria is an important cause of illness and death in many parts of the world, especially in sub-Saharan Africa. There has been a renewed emphasis on preventive measures at community and individual levels. Insecticide-treated nets (ITNs) are the most prominent malaria preventive measure for large-scale deployment in highly endemic areas. To assess the impact of insecticide-treated bed nets or curtains on mortality, malarial illness (life-threatening and mild), malaria parasitaemia, anaemia, and spleen rates. I searched the Cochrane Infectious Diseases Group trials register (January 2003), CENTRAL (The Cochrane Library, Issue 1, 2003), MEDLINE (1966 to October 2003), EMBASE (1974 to November 2002), LILACS (1982 to January 2003), and reference lists of reviews, books, and trials. I handsearched journals, contacted researchers, funding agencies, and net and insecticide manufacturers. Individual and cluster randomized controlled trials of insecticide-treated bed nets or curtains compared to nets without insecticide or no nets. Trials including only pregnant women were excluded. The reviewer and two independent assessors reviewed trials for inclusion. The reviewer assessed trial methodological quality and extracted and analysed data. Fourteen cluster randomized and eight individually randomized controlled trials met the inclusion criteria. Five trials measured child mortality: ITNs provided 17% protective efficacy (PE) compared to no nets (relative rate 0.83, 95% confidence interval (CI) 0.76 to 0.90), and 23% PE compared to untreated nets (relative rate 0.77, 95% CI 0.63 to 0.95). About 5.5 lives (95% CI 3.39 to 7.67) can be saved each year for every 1000 children protected with ITNs. In areas with stable malaria, ITNs reduced the incidence of uncomplicated malarial episodes in areas of stable malaria by 50% compared to no nets, and 39% compared to untreated nets; and in areas of unstable malaria: by 62% for compared to no nets and 43% compared to untreated nets for Plasmodium falciparum episodes, and by 52% compared to no nets and 11% compared to untreated nets for P. vivax episodes. When compared to no nets and in areas of stable malaria, ITNs also had an impact on severe malaria (45% PE, 95% CI 20 to 63), parasite prevalence (13% PE), high parasitaemia (29% PE), splenomegaly (30% PE), and their use improved the average haemoglobin level in children by 1.7% packed cell volume. ITNs are highly effective in reducing childhood mortality and morbidity from malaria. Widespread access to ITNs is currently being advocated by Roll Back Malaria, but universal deployment will require major financial, technical, and operational inputs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            PROGNOSIS FOR INTERRUPTION OF MALARIA TRANSMISSION THROUGH ASSESSMENT OF THE MOSQUITO'S VECTORIAL CAPACITY.

            C. Garrett (1964)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anopheles funestus resistant to pyrethroid insecticides in South Africa.

              Northern Kwazulu/Natal (KZN) Province of South Africa borders on southern Mozambique, between Swaziland and the Indian Ocean. To control malaria vectors in KZN, houses were sprayed annually with residual DDT 2 g/ m2 until 1996 when the treatment changed to deltamethrin 20-25 mg/m2. At Ndumu (27 degrees 02'S, 32 degrees 19'E) the recorded malaria incidence increased more than six-fold between 1995 and 1999. Entomological surveys during late 1999 found mosquitoes of the Anopheles funestus group (Diptera: Culicidae) resting in sprayed houses in some sectors of Ndumu area. This very endophilic-vector of malaria had been eliminated from South Africa by DDT spraying in the 1950s, leaving the less endophilic An. arabiensis Patton as the only vector of known importance in KZN. Deltamethrin-sprayed houses at Ndumu were checked for insecticide efficacy by bioassay using susceptible An. arabiensis (laboratory-reared) that demonstrated 100% mortality. Members of the An. funestus group from Ndumu houses (29 males, 116 females) were identified by the rDNA PCR method and four species were found: 74 An. funestus Giles sensu stricto, 34 An. parensis Gillies, seven An. rivulorum Leeson and one An. leesoni Evans. Among An. funestus s.s. females, 5.4% (4/74) were positive for Plasmodium falciparum by ELISA and PCR tests. To test for pyrethroid resistance, mosquito adults were exposed to permethrin discriminating dosage and mortality scored 24h post-exposure: survival rates of wild-caught healthy males were 5/10 An. funestus, 1/9 An. rivulorum and 0/2 An. parensis; survival rates of laboratory-reared adult progeny from 19 An. funestus females averaged 14% (after 1h exposure to 1% permethrin 25:75cis:trans on papers in WHO test kits) and 27% (after 30 min in a bottle with 25 microg permethrin 40:60cis:trans). Anopheles funestus families showing >20% survival in these two resistance test procedures numbered 5/19 and 12/19, respectively. Progeny from 15 of the families were tested on 4% DDT impregnated papers and gave 100% mortality. Finding these proportions of pyrethroid-resistant An. funestus, associated with a malaria upsurge at Ndumu, has serious implications for malaria vector control operations in southern Africa.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                2003
                15 September 2003
                : 2
                : 29
                Affiliations
                [1 ]Laboratory of Entomology, Wageningen University & Research Centre, PO Box 8031, 6700 EH, Wageningen, the Netherlands
                [2 ]International Centre of Insect Physiology and Ecology (ICIPE), Mbita Point Research and Training Centre, PO Box 30, Mbita Point, Kenya
                [3 ]FAO/IAEA Agriculture and Biotechnology Laboratory, A-2444 Seibersdorf, Austria
                Article
                1475-2875-2-29
                10.1186/1475-2875-2-29
                222926
                14565851
                4cbcb93a-f6a2-4598-9985-65db92252438
                Copyright © 2003 Scholte et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 18 July 2003
                : 15 September 2003
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article