102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bed Rest, Exercise Countermeasure and Reconditioning Effects on the Human Resting Muscle Tone System

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human resting muscle tone (HRMT) system provides structural and functional support to skeletal muscle and associated myofascial structures (tendons, fascia) in normal life. Little information is available on changes to the HRMT in bed rest. A set of dynamic oscillation mechanosignals ([Hz], [N/m], log decrement, [ms]) collected and computed by a hand-held digital palpation device (MyotonPRO) were used to study changes in tone and in key biomechanical and viscoelastic properties in global and postural skeletal muscle tendons and fascia from a non-exercise control (CTR) and an exercise (JUMP) group performing reactive jumps on a customized sledge system during a 60 days head-down tilt bed rest (RSL Study 2015–2016). A set of baseline and differential natural oscillation signal patterns were identified as key determinants in resting muscle and myofascial structures from back, thigh, calf, patellar and Achilles tendon, and plantar fascia. The greatest changes were found in thigh and calf muscle and tendon, with little change in the shoulder muscles. Functional tests (one leg jumps, electromyography) showed only trends in relevant leg muscle groups. Increased anti-Collagen-I immunoreactivity found in CTR soleus biopsy cryosections was absent from JUMP. Results allow for a muscle health status definition after chronic disuse in bed rest without and with countermeasure, and following reconditioning. Findings improve our understanding of structural and functional responses of the HRMT to disuse and exercise, may help to guide treatment in various clinical settings (e.g., muscle tone disorders, neuro-rehabilitation), and promote monitoring of muscle health and training status in personalized sport and space medicine.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          From space to Earth: advances in human physiology from 20 years of bed rest studies (1986-2006).

          Bed rest studies of the past 20 years are reviewed. Head-down bed rest (HDBR) has proved its usefulness as a reliable simulation model for the most physiological effects of spaceflight. As well as continuing to search for better understanding of the physiological changes induced, these studies focused mostly on identifying effective countermeasures with encouraging but limited success. HDBR is characterised by immobilization, inactivity, confinement and elimination of Gz gravitational stimuli, such as posture change and direction, which affect body sensors and responses. These induce upward fluid shift, unloading the body's upright weight, absence of work against gravity, reduced energy requirements and reduction in overall sensory stimulation. The upward fluid shift by acting on central volume receptors induces a 10-15% reduction in plasma volume which leads to a now well-documented set of cardiovascular changes including changes in cardiac performance and baroreflex sensitivity that are identical to those in space. Calcium excretion is increased from the beginning of bed rest leading to a sustained negative calcium balance. Calcium absorption is reduced. Body weight, muscle mass, muscle strength is reduced, as is the resistance of muscle to insulin. Bone density, stiffness of bones of the lower limbs and spinal cord and bone architecture are altered. Circadian rhythms may shift and are dampened. Ways to improve the process of evaluating countermeasures--exercise (aerobic, resistive, vibration), nutritional and pharmacological--are proposed. Artificial gravity requires systematic evaluation. This review points to clinical applications of BR research revealing the crucial role of gravity to health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The thoracolumbar fascia: anatomy, function and clinical considerations.

            In this overview, new and existent material on the organization and composition of the thoracolumbar fascia (TLF) will be evaluated in respect to its anatomy, innervation biomechanics and clinical relevance. The integration of the passive connective tissues of the TLF and active muscular structures surrounding this structure are discussed, and the relevance of their mutual interactions in relation to low back and pelvic pain reviewed. The TLF is a girdling structure consisting of several aponeurotic and fascial layers that separates the paraspinal muscles from the muscles of the posterior abdominal wall. The superficial lamina of the posterior layer of the TLF (PLF) is dominated by the aponeuroses of the latissimus dorsi and the serratus posterior inferior. The deeper lamina of the PLF forms an encapsulating retinacular sheath around the paraspinal muscles. The middle layer of the TLF (MLF) appears to derive from an intermuscular septum that developmentally separates the epaxial from the hypaxial musculature. This septum forms during the fifth and sixth weeks of gestation. The paraspinal retinacular sheath (PRS) is in a key position to act as a 'hydraulic amplifier', assisting the paraspinal muscles in supporting the lumbosacral spine. This sheath forms a lumbar interfascial triangle (LIFT) with the MLF and PLF. Along the lateral border of the PRS, a raphe forms where the sheath meets the aponeurosis of the transversus abdominis. This lateral raphe is a thickened complex of dense connective tissue marked by the presence of the LIFT, and represents the junction of the hypaxial myofascial compartment (the abdominal muscles) with the paraspinal sheath of the epaxial muscles. The lateral raphe is in a position to distribute tension from the surrounding hypaxial and extremity muscles into the layers of the TLF. At the base of the lumbar spine all of the layers of the TLF fuse together into a thick composite that attaches firmly to the posterior superior iliac spine and the sacrotuberous ligament. This thoracolumbar composite (TLC) is in a position to assist in maintaining the integrity of the lower lumbar spine and the sacroiliac joint. The three-dimensional structure of the TLF and its caudally positioned composite will be analyzed in light of recent studies concerning the cellular organization of fascia, as well as its innervation. Finally, the concept of a TLC will be used to reassess biomechanical models of lumbopelvic stability, static posture and movement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-duration bed rest as an analog to microgravity.

              Long-duration bed rest is widely employed to simulate the effects of microgravity on various physiological systems, especially for studies of bone, muscle, and the cardiovascular system. This microgravity analog is also extensively used to develop and test countermeasures to microgravity-altered adaptations to Earth gravity. Initial investigations of bone loss used horizontal bed rest with the view that this model represented the closest approximation to inactivity and minimization of hydrostatic effects, but all Earth-based analogs must contend with the constant force of gravity by adjustment of the G vector. Later concerns about the lack of similarity between headward fluid shifts in space and those with horizontal bed rest encouraged the use of 6 degree head-down tilt (HDT) bed rest as pioneered by Russian investigators. Headward fluid shifts in space may redistribute bone from the legs to the head. At present, HDT bed rest with normal volunteers is the most common analog for microgravity simulation and to test countermeasures for bone loss, muscle and cardiac atrophy, orthostatic intolerance, and reduced muscle strength/exercise capacity. Also, current physiologic countermeasures are focused on long-duration missions such as Mars, so in this review we emphasize HDT bed rest studies with durations of 30 days and longer. However, recent results suggest that the HDT bed rest analog is less representative as an analog for other important physiological problems of long-duration space flight such as fluid shifts, spinal dysfunction and radiation hazards.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                03 July 2018
                2018
                : 9
                : 810
                Affiliations
                [1] 1Vegetative Anatomy, Charité Universitätsmedizin Berlin , Berlin, Germany
                [2] 2Neuroscience Group, German Sports University , Cologne, Germany
                [3] 3Human Physiology, German Aerospace Center , Cologne, Germany
                [4] 4Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu , Tartu, Estonia
                [5] 5Ragnar Viir, Limited Partnership , Helsinki, Finland
                [6] 6Neuromechanics Research Group, Sport Sciences, University of Konstanz , Konstanz, Germany
                [7] 7Faculty of Health Sciences, University of Southampton , Southampton, United Kingdom
                [8] 8Center of Space Medicine Berlin , Berlin, Germany
                [9] 9Myoton AS , Tallinn, Estonia
                Author notes

                Edited by: Marc-Antoine Custaud, Université d’Angers, France

                Reviewed by: Loïc Treffel, Claude Bernard University Lyon 1, France; Elena S. Tomilovskaya, Institute of Biomedical Problems (RAS), Russia

                *Correspondence: Dieter Blottner, dieter.blottner@ 123456charite.de

                This article was submitted to Environmental, Aviation and Space Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.00810
                6037768
                30018567
                4d1d2a6a-fd97-4f4a-9ea3-79c2b9e5740f
                Copyright © 2018 Schoenrock, Zander, Dern, Limper, Mulder, Veraksitš, Viir, Kramer, Stokes, Salanova, Peipsi and Blottner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 February 2018
                : 08 June 2018
                Page count
                Figures: 13, Tables: 2, Equations: 0, References: 59, Pages: 20, Words: 0
                Funding
                Funded by: Bundesministerium für Wirtschaft und Technologie 10.13039/501100002765
                Award ID: 50WB1421
                Funded by: European Space Agency 10.13039/501100000844
                Funded by: Deutsches Zentrum für Luft- und Raumfahrt 10.13039/501100002946
                Award ID: 50WB1421
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                skeletal muscle,tendon,fascia,biomechanical properties,disuse
                Anatomy & Physiology
                skeletal muscle, tendon, fascia, biomechanical properties, disuse

                Comments

                Comment on this article