10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Synthesis protocols, design engineering, theoretical calculations, and energy applications for metal–organic frameworks (MOFs)-derived electrocatalysts are systematically analyzed.

          • Synthesizing methods of MOF-derived catalysts and their oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction electrocatalysis are discussed.

          • The current status, ongoing challenges, and potential future outlooks of MOFs-derived electrocatalysts are highlighted.

          Abstract

          The core reactions for fuel cells, rechargeable metal–air batteries, and hydrogen fuel production are the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), which are heavily dependent on the efficiency of electrocatalysts. Enormous attempts have previously been devoted in non-noble electrocatalysts born out of metal–organic frameworks (MOFs) for ORR, OER, and HER applications, due to the following advantageous reasons: (i) The significant porosity eases the electrolyte diffusion; (ii) the supreme catalyst–electrolyte contact area enhances the diffusion efficiency; and (iii) the electronic conductivity can be extensively increased owing to the unique construction block subunits for MOFs-derived electrocatalysis. Herein, the recent progress of MOFs-derived electrocatalysts including synthesis protocols, design engineering, DFT calculations roles, and energy applications is discussed and reviewed. It can be concluded that the elevated ORR, OER, and HER performances are attributed to an advantageously well-designed high-porosity structure, significant surface area, and plentiful active centers. Furthermore, the perspectives of MOF-derived electrocatalysts for the ORR, OER, and HER are presented.

          Related collections

          Most cited references176

          • Record: found
          • Abstract: found
          • Article: not found

          Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

          A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

            The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of -80 millivolts and a current density of 4.1 milliamps per square centimeter at -0.22 volts, compared with -85 millivolts and 1.1 milliamps per square centimeter at -0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Introduction to metal-organic frameworks.

                Bookmark

                Author and article information

                Contributors
                hedaping@whut.edu.cn
                msc@whut.edu.cn
                Journal
                Nanomicro Lett
                Nanomicro Lett
                Nano-Micro Letters
                Springer Singapore (Singapore )
                2311-6706
                2150-5551
                1 June 2021
                1 June 2021
                December 2021
                : 13
                : 132
                Affiliations
                [1 ]GRID grid.162110.5, ISNI 0000 0000 9291 3229, School of Science, , Wuhan University of Technology, ; Wuhan, 430070 People’s Republic of China
                [2 ]Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200 People’s Republic of China
                [3 ]GRID grid.162110.5, ISNI 0000 0000 9291 3229, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, , Wuhan University of Technology, ; Wuhan, 430070 People’s Republic of China
                Article
                656
                10.1007/s40820-021-00656-w
                8169752
                4d41653d-da37-4d0b-bb8c-a6edbfaf6088
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 February 2021
                : 13 April 2021
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                mof-derived electrocatalysis,oxygen reduction reaction,oxygen evolution reaction,hydrogen evolution reaction

                Comments

                Comment on this article