1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of BTK Inhibition in the Treatment of Chronic Lymphocytic Leukemia: A Clinical View

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The B cell receptor (BCR) signaling pathway is functional and has critical cell survival implications in B cell malignancies, such as chronic lymphocytic leukemia (CLL). Orally administered small molecule tyrosine kinase inhibitors of members of the BCR signaling pathway have proven to be transformational in treatment of CLL. The first-generation inhibitor, ibrutinib, covalently binds to the C481 amino acid of Bruton’s tyrosine kinase (BTK), thereby irreversibly inhibiting its kinase activity, and interferes with the biology of the cells, ultimately resulting in CLL cell death and therapeutic response. Remissions are not deep to the point of considering discontinuation for most patients, but BTK-inhibitor-based therapy provides exceptional long-term disease control with continuous treatment. There are in-class toxicities and more selective second- and subsequent-generation agents and reversible inhibitors have been developed with the intent of reducing toxicities. Also, strategies to subvert resistance have included tighter or alternative, non-covalent, inhibitor binding. Furthermore, other strategies to deplete BTK protein, such as degraders, are in development and being tested in the clinic. Ultimately, the development and approval of these agents targeting BTK have ushered in a new era of chemotherapy-free treatments with remarkably improved survival outcomes for patients with CLL.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

            Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies.

              Coronavirus-19 (COVI-19) involves humans as well as animals and may cause serious damage to the respiratory tract, including the lung: coronavirus disease (COVID-19). This pathogenic virus has been identified in swabs performed on the throat and nose of patients who suffer from or are suspected of the disease. When COVI-19 infect the upper and lower respiratory tract it can cause mild or highly acute respiratory syndrome with consequent release of pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6. The binding of COVI-19 to the Toll Like Receptor (TLR) causes the release of pro-IL-1β which is cleaved by caspase-1, followed by inflammasome activation and production of active mature IL-1β which is a mediator of lung inflammation, fever and fibrosis. Suppression of pro-inflammatory IL-1 family members and IL-6 have been shown to have a therapeutic effect in many inflammatory diseases, including viral infections. Cytokine IL-37 has the ability to suppress innate and acquired immune response and also has the capacity to inhibit inflammation by acting on IL-18Rα receptor. IL-37 performs its immunosuppressive activity by acting on mTOR and increasing the adenosine monophosphate (AMP) kinase. This cytokine inhibits class II histocompatibility complex (MHC) molecules and inflammation in inflammatory diseases by suppressing MyD88 and subsequently IL-1β, IL-6, TNF and CCL2. The suppression of IL-1β by IL-37 in inflammatory state induced by coronavirus-19 can have a new therapeutic effect previously unknown. Another inhibitory cytokine is IL-38, the newest cytokine of the IL-1 family members, produced by several immune cells including B cells and macrophages. IL-38 is also a suppressor cytokine which inhibits IL-1β and other pro-inflammatory IL-family members. IL-38 is a potential therapeutic cytokine which inhibits inflammation in viral infections including that caused by coronavirus-19, providing a new relevant strategy.
                Bookmark

                Author and article information

                Journal
                J Exp Pharmacol
                J Exp Pharmacol
                jep
                Journal of Experimental Pharmacology
                Dove
                1179-1454
                29 October 2021
                2021
                : 13
                : 923-935
                Affiliations
                [1 ]Unità Operativa di Trapianto di Midollo Osseo e Servizio Trasfusionale, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon , Napoli, Italy
                [2 ]Department of Precision Medicine, University of Campania “L. Vanvitelli” , Napoli, Italy
                [3 ]Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
                Author notes
                Correspondence: William G Wierda Email wwierda@mdanderson.org
                Article
                265284
                10.2147/JEP.S265284
                8565990
                34744463
                4db4cc3f-9b8b-4f8f-af80-eef109fce1d2
                © 2021 Tambaro et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 26 June 2021
                : 08 October 2021
                Page count
                Figures: 1, Tables: 2, References: 111, Pages: 13
                Categories
                Review

                chronic lymphocytic leukemia,cll,bruton’s tyrosine kinase,btk,targeted therapy,ibrutinib,acalabrutinib,pirtobrutinib

                Comments

                Comment on this article