44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Making sense of genomic islands of differentiation in light of speciation

      ,
      Nature Reviews Genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As populations diverge, genetic differences accumulate across the genome. Spurred by rapid developments in sequencing technology, genome-wide population surveys of natural populations promise insights into the evolutionary processes and the genetic basis underlying speciation. Although genomic regions of elevated differentiation are the focus of searches

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Hybridization and speciation.

          Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genomic basis of adaptive evolution in threespine sticklebacks

            Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The hitch-hiking effect of a favourable gene

                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Nature
                1471-0056
                1471-0064
                November 14 2016
                November 14 2016
                : 18
                : 2
                : 87-100
                Article
                10.1038/nrg.2016.133
                27840429
                4dc1395a-fc33-4907-8b03-cd9028656d3a
                © 2016
                History

                Comments

                Comment on this article