50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanocarriers for Nitric Oxide Delivery

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitric oxide (NO) is a promising pharmaceutical agent that has vasodilative, antibacterial, and tumoricidal effects. To study the complex and wide-ranging roles of NO and to facilitate its therapeutic use, a great number of synthetic compounds (e.g., nitrosothiols, nitrosohydroxyamines, N-diazeniumdiolates, and nitrosyl metal complexes) have been developed to chemically stabilize and release NO in a controlled manner. Although NO is currently being exploited in many biomedical applications, its use is limited by several factors, including a short half-life, instability during storage, and potential toxicity. Additionally, efficient methods of both localized and systemic in vivo delivery and dose control are needed. One strategy for addressing these limitations and thus increasing the utility of NO donors is based on nanotechnology.

          Related collections

          Most cited references199

          • Record: found
          • Abstract: not found
          • Article: not found

          A study of the nucleation and growth processes in the synthesis of colloidal gold

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles in medicine: therapeutic applications and developments.

            Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanoparticles for biology and medicine.

              Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.
                Bookmark

                Author and article information

                Journal
                J Drug Deliv
                JDD
                Journal of Drug Delivery
                Hindawi Publishing Corporation
                2090-3014
                2090-3022
                2011
                22 August 2011
                : 2011
                : 936438
                Affiliations
                Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14010-903 Ribeirão Preto, SP, Brazil
                Author notes
                *Juliana Maldonado Marchetti: jmarchet@ 123456usp.br

                Academic Editor: Tamer Elbayoumi

                Article
                10.1155/2011/936438
                3159988
                21869934
                4dce2e2f-967c-4bdf-8467-545f56a2d538
                Copyright © 2011 Juliana Saraiva et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 December 2010
                : 13 May 2011
                Categories
                Review Article

                Pharmaceutical chemistry
                Pharmaceutical chemistry

                Comments

                Comment on this article