12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discs of mammalian rod photoreceptors form through the membrane evagination mechanism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultrastructural analysis of membrane organization in mouse rod cells demonstrates that new photoreceptor discs are contiguous evaginations of the outer segment plasma membrane, thereby resolving the debate of whether discs are formed through membrane evagination or intracellular vesicular fusion.

          Abstract

          Photoreceptor discs are membrane organelles harboring components of the visual signal transduction pathway. The mechanism by which discs form remains enigmatic and is the subject of a major controversy. Classical studies suggest that discs are formed as serial plasma membrane evaginations, whereas a recent alternative postulates that discs, at least in mammalian rods, are formed through intracellular vesicular fusion. We evaluated these models in mouse rods using methods that distinguish between the intracellular vesicular structures and plasma membrane folds independently of their appearance in electron micrographs. The first differentiated membranes exposed to the extracellular space from intracellular membranes; the second interrogated the orientation of protein molecules in new discs. Both approaches revealed that new discs are plasma membrane evaginations. We further demonstrated that vesiculation and plasma membrane enclosure at the site of new disc formation are artifacts of tissue fixation. These data indicate that all vertebrate photoreceptors use the evolutionary conserved membrane evagination mechanism to build their discs.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Responses of retinal rods to single photons.

          1. A suction electrode was used to record the membrane current of single rod outer segments in pieces of toad retina. During dim illumination the membrane current showed pronounced fluctuations. 2. Amplitude histograms of responses to dim flashes of fixed intensity exhibited two discrete peaks, one at 0 pA and one near 1 pA, suggesting that the response was quantized. By setting a criterion amplitude level, flash responses could be classed as 'failures' (no response) or as 'successes' (at least one quantal event). 3. The variation of fraction of successes with flash intensity was consistent with the hypothesis that each quantal electrical event resulted from a single photoisomerization. 4. The quantal event had a mean amplitude of about 1 pA (5% of the standing dark current) and a standard deviation of 0.2 pA. Dispersion in the event amplitude prevented identification of histogram peaks corresponding to two or more photoisomerizations. 5. Individual quantal responses exhibited a smooth shape very similar to that of the average quantal response. This suggests that a single photoisomerization releases many particles of transmitter and that radial diffusion of internal transmitter is not a major source of delay in the light response. 6. The 'quantum efficiency' with which an absorbed photon generated an electrical event was measured as 0.5 +/- 0.1 (S.E. of mean, n = 4). This is slightly lower than the quantum efficiency of photoisomerization obtained previously for rhodopsin in solution. 7. At wavelengths between 420 and 700 nm the quantal event was invariant in size, although the cell's sensitivity varied over a range of 10(5). 8. The power spectrum of the fluctuations in dim steady light was predicted by assuming that a random series of quantal events occurred independently. 9. In brighter light the fluctuations were faster, and the response to an incremental flash was reduced in size and duration. The power spectrum could be predicted by assuming random superposition of events with the shape of the incremental flash response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration.

            Defects in primary cilia lead to devastating disease because of their roles in sensation and developmental signaling but much is unknown about ciliary structure and mechanisms of their formation and maintenance. We used cryo-electron tomography to obtain 3D maps of the connecting cilium and adjacent cellular structures of a modified primary cilium, the rod outer segment, from wild-type and genetically defective mice. The results reveal the molecular architecture of the cilium and provide insights into protein functions. They suggest that the ciliary rootlet is involved in cellular transport and stabilizes the axoneme. A defect in the BBSome membrane coat caused defects in vesicle targeting near the base of the cilium. Loss of the proteins encoded by the Cngb1 gene disrupted links between the disk and plasma membranes. The structures of the outer segment membranes support a model for disk morphogenesis in which basal disks are enveloped by the plasma membrane. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disc morphogenesis in vertebrate photoreceptors.

              Electron microscopic examination of the bases of adult rod and cone outer segments (rhesus monkey, ground squirrel, and grey squirrel) has led to a new model of disc morphogenesis. In this model the disc surfaces and disc rims develop by separate mechanisms and from separate regions of the membrane of the inner face of the cilium. This membrane is alternately specified into regions that will form either the disc surfaces or the disc rims. The disc surfaces develop by an evagination or outpouching of the ciliary membrane. The two surfaces of an evagination, scleral and vitreal, each form one of the surfaces of adjacent discs. The disc rim is initially specified as a region of ciliary membrane between adjacent disc-surface evaginations. This region grows bilaterally around the circumferences of adjacent discs, zippering together the apposed surfaces to form the rim and completed disc. At the same time it seals the plasma-membrane edges of the evaginations, which have become detached from the surfaces. Incisures form in rod discs by infolding of the rim and surfaces together, and they begin to form before the rim is completed around the disc perimeter. When a number of new discs are developing simultaneously the ciliary membrane at the base of an outer segment consists of a stack of rim forming and surface forming growth points. This model provides, in addition, for the continuous renewal of outer-segment plasma membrane. It also establishes a developmental basis for the structural uniqueness of the disc rim. Finally, it indicates an evolutionary relationship between the discs of vertebrate visual cells and the membrane specializations of invertebrate visual cells.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                9 November 2015
                : 211
                : 3
                : 495-502
                Affiliations
                [1 ]Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
                [2 ]Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
                Author notes
                Correspondence to Vadim Y. Arshavsky: vadim.arshavsky@ 123456duke.edu
                Article
                201508093
                10.1083/jcb.201508093
                4639867
                26527746
                4ec1e89b-10fb-445b-be87-b6f9f9a31d22
                © 2015 Ding et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 24 August 2015
                : 25 September 2015
                Categories
                Research Articles
                Report

                Cell biology
                Cell biology

                Comments

                Comment on this article