Search for authorsSearch for similar articles
47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SwiftLib: rapid degenerate-codon-library optimization through dynamic programming

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Degenerate codon (DC) libraries efficiently address the experimental library-size limitations of directed evolution by focusing diversity toward the positions and toward the amino acids (AAs) that are most likely to generate hits; however, manually constructing DC libraries is challenging, error prone and time consuming. This paper provides a dynamic programming solution to the task of finding the best DCs while keeping the size of the library beneath some given limit, improving on the existing integer-linear programming formulation. It then extends the algorithm to consider multiple DCs at each position, a heretofore unsolved problem, while adhering to a constraint on the number of primers needed to synthesize the library. In the two library-design problems examined here, the use of multiple DCs produces libraries that very nearly cover the set of desired AAs while still staying within the experimental size limits. Surprisingly, the algorithm is able to find near-perfect libraries where the ratio of amino-acid sequences to nucleic-acid sequences approaches 1; it effectively side-steps the degeneracy of the genetic code. Our algorithm is freely available through our web server and solves most design problems in about a second.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules.

          We have recently completed a full re-architecturing of the ROSETTA molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy-to-use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as ROSETTA3 and is freely available for academic use. At the time of its release, it contained 470,000 lines of code. Counting currently unpublished protocols at the time of this writing, the source includes 1,285,000 lines. Its rapid growth is a testament to its ease of use. This chapter describes the requirements for our new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform. © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Native protein sequences are close to optimal for their structures.

            How large is the volume of sequence space that is compatible with a given protein structure? Starting from random sequences, low free energy sequences were generated for 108 protein backbone structures by using a Monte Carlo optimization procedure and a free energy function based primarily on Lennard-Jones packing interactions and the Lazaridis-Karplus implicit solvation model. Remarkably, in the designed sequences 51% of the core residues and 27% of all residues were identical to the amino acids in the corresponding positions in the native sequences. The lowest free energy sequences obtained for ensembles of native-like backbone structures were also similar to the native sequence. Furthermore, both the individual residue frequencies and the covariances between pairs of positions observed in the very large SH3 domain family were recapitulated in core sequences designed for SH3 domain structures. Taken together, these results suggest that the volume of sequence space optimal for a protein structure is surprisingly restricted to a region around the native sequence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Precision is essential for efficient catalysis in an evolved Kemp eliminase.

              Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination--a well-studied model system for proton transfer from carbon--we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 × 10(8)-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 Å resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                11 March 2015
                24 December 2014
                24 December 2014
                : 43
                : 5
                : e34
                Affiliations
                [1 ]Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
                [2 ]Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 919 966 6781; Fax: +1 919 966 2852; Email: leaverfa@ 123456email.unc.edu
                Article
                10.1093/nar/gku1323
                4357694
                25539925
                4ee795f5-81be-47df-9426-05c0ca13c02b
                © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 December 2014
                : 27 October 2014
                : 7 September 2014
                Page count
                Pages: 10
                Categories
                24
                Methods Online
                Custom metadata
                11 March 2015

                Genetics
                Genetics

                Comments

                Comment on this article