Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unprecedented High-Resolution View of Bacterial Operon Architecture Revealed by RNA Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3′ transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5′ ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread.

          IMPORTANCE

          We precisely mapped the 5′ and 3′ ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are complex, with internal promoters and terminators generating multiple transcription units and allowing differential gene expression within these operons. We discovered extensive antisense transcription that results from more than 500 operons, which fully overlap or extensively overlap adjacent divergent or convergent operons. The genomic regions corresponding to these antisense transcripts are highly conserved in E. coli (including Shigella species), although it remains to be proven whether or not they are functional. Our observations of features unearthed by single-nucleotide transcriptome mapping suggest that deeper layers of transcriptional regulation in bacteria are likely to be revealed in the future.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Assessing computational tools for the discovery of transcription factor binding sites.

          The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena.

            In the macronuclear rRNA genes of Tetrahymena thermophila, a 413 bp intervening sequence (IVS) interrupts the 26S rRNA-coding region. A restriction fragment of the rDNA containing the IVS and portions of the adjacent rRNA sequences (exons) was inserted downstream from the lac UV5 promoter in a recombinant plasmid. Transcription of this template by purified Escherichia coli RNA polymerase in vitro produced a shortened version of the pre-rRNA, which was then deproteinized. When incubated with monovalent and divalent cations and a guanosine factor, this RNA underwent splicing. The reactions that were characterized included the precise excision of the IVS, attachment of guanosine to the 5' end of the IVS, covalent cyclization of the IVS and ligation of the exons. We conclude that splicing activity is intrinsic to the structure of the RNA, and that enzymes, small nuclear RNAs and folding of the pre-rRNA into an RNP are unnecessary for these reactions. We propose that the IVS portion of the RNA has several enzyme-like properties that enable it to break and reform phosphodiester bonds. The finding of autocatalytic rearrangements of RNA molecules has implications for the mechanism and the evolution of other reactions that involve RNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive comparative analysis of strand-specific RNA sequencing methods

              Strand-specific, massively-parallel cDNA sequencing (RNA-Seq) is a powerful tool for novel transcript discovery, genome annotation, and expression profiling. Despite multiple published methods for strand-specific RNA-Seq, no consensus exists as to how to choose between them. Here, we developed a comprehensive computational pipeline to compare library quality metrics from any RNA-Seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we compared seven library construction protocols, including both published and our own novel methods. We found marked differences in strand-specificity, library complexity, evenness and continuity of coverage, agreement with known annotations, and accuracy for expression profiling. Weighing each method’s performance and ease, we identify the dUTP second strand marking and the Illumina RNA ligation methods as the leading protocols, with the former benefitting from the current availability of paired-end sequencing. Our analysis provides a comprehensive benchmark, and our computational pipeline is applicable for assessment of future protocols in other organisms.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                8 July 2014
                Jul-Aug 2014
                : 5
                : 4
                : e01442-14
                Affiliations
                [ a ]Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
                [ b ]Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
                [ c ]Purdue Genomics Facility, Purdue University, West Lafayette, Indiana, USA
                [ d ]Department of Frontier Bioscience and Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
                [ e ]Chemical Resource Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
                [ f ]Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
                Author notes
                Address correspondence to Tyrrell Conway, tconway@ 123456ou.edu , or Barry L. Wanner, blwanner@ 123456purdue.edu .

                Editor Sankar Adhya, National Cancer Institute, NIH

                This article is a direct contribution from a Fellow of the American Academy of Microbiology.

                Article
                mBio01442-14
                10.1128/mBio.01442-14
                4161252
                25006232
                4f5df2b0-9228-4f9e-97b3-134b28630d09
                Copyright © 2014 Conway et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 June 2014
                : 16 June 2014
                Page count
                Pages: 12
                Categories
                Research Article
                Custom metadata
                July/August 2014

                Life sciences
                Life sciences

                Comments

                Comment on this article