28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences

      research-article
      , , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS 1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.

          Author summary

          Shigella flexneri is the leading cause of bacillary dysentery worldwide. Key to its virulence is a large 210 kb single copy plasmid, pINV, which encodes a Type III Secretion System (T3SS) on a 30 kb pathogenicity island (PAI). When S. flexneri is grown on solid media containing Congo red (CR), virulent, T3SS-expressing colonies appear red (CR +). Colonies of bacteria are white and large (CR -) if they lose T3SS expression; thus, the T3SS imposes a significant metabolic burden on S. flexneri. Within the laboratory, spontaneous emergence of CR - colonies is observed, but the molecular events responsible have not been defined. We characterised CR - bacteria that arise during growth at 37°C and 21°C, and demonstrate that recombination between insertion sequences (ISs) on pINV results in loss of the PAI. Furthermore, we demonstrate that MvpAT, a member of the VapBC family of toxin:antitoxin systems encoded on pINV, is responsible for both plasmid maintenance through post-segregational killing, and retention of adjacent sequences. We show for the first time that ISs on the plasmid and chromosome mediate inter-molecular recombination events, resulting in spontaneous and reversible integration of pINV into the chromosome; following integration, T3SS expression is down-regulated. Therefore, integration/excision results in phenotypic heterogeneity that provides a bet-hedging strategy for Shigella to circumvent the metabolic burden associated with retaining virulence genes.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.

          Two cassettes with tetracycline-resistance (TcR) and kanamycin-resistance (KmR) determinants have been developed for the construction of insertion and deletion mutants of cloned genes in Escherichia coli. In both cassettes, the resistance determinants are flanked by the short direct repeats (FRT sites) required for site-specific recombination mediated by the yeast Flp recombinase. In addition, a plasmid with temperature-sensitive replication for temporal production of the Flp enzyme in E. coli has been constructed. After a gene disruption or deletion mutation is constructed in vitro by insertion of one of the cassettes into a given gene, the mutated gene is transferred to the E. coli chromosome by homologous recombination and selection for the antibiotic resistance provided by the cassette. If desired, the resistance determinant can subsequently be removed from the chromosome in vivo by Flp action, leaving behind a short nucleotide sequence with one FRT site and with no polar effect on downstream genes. This system was applied in the construction of an E. coli endA deletion mutation which can be transduced by P1 to the genetic background of interest using TcR as a marker. The transductant can then be freed of the TcR if required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shigella flexneri induces apoptosis in infected macrophages.

            The Gram-negative bacterial pathogen Shigella flexneri causes dysentery by invading the human colonic mucosa. Bacteria are phagocytosed by enterocytes, escape from the phagosome into the cytoplasm and spread to adjacent cells. After crossing the epithelium, Shigella reaches the lamina propria of intestinal villi, the first line of defence. This tissue is densely populated with phagocytes that are killed in great numbers, resulting in abscesses. The genes required for cell invasion and macrophage killing are located on a 220-kilobase plasmid. We report here on the mechanism of cytotoxicity used by S. flexneri to kill macrophages. Each of four different strains was tested for its capacity to induce cell death. An invasive strain induced programmed cell death (apoptosis), whereas its non-invasive, plasmidcured isogenic strain was not toxic; neither was a mutant in ipa B (ref. 10) (invasion protein antigen), a gene necessary for entry. A non-invasive strain expressing the haemolysin operon of Escherichia coli induced accidental cell death (necrosis), demonstrating that other bacterial cytotoxic mechanisms do not lead to apoptosis. This is the first evidence that an invasive bacterial pathogen can induce suicide in its host cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global burden of Shigella infections: implications for vaccine development and implementation of control strategies.

              Few studies provide data on the global morbidity and mortality caused by infection with Shigella spp.; such estimates are needed, however, to plan strategies of prevention and treatment. Here we report the results of a review of the literature published between 1966 and 1997 on Shigella infection. The data obtained permit calculation of the number of cases of Shigella infection and the associated mortality occurring worldwide each year, by age, and (as a proxy for disease severity) by clinical category, i.e. mild cases remaining at home, moderate cases requiring outpatient care, and severe cases demanding hospitalization. A sensitivity analysis was performed to estimate the high and low range of morbid and fatal cases in each category. Finally, the frequency distribution of Shigella infection, by serogroup and serotype and by region of the world, was determined. The annual number of Shigella episodes throughout the world was estimated to be 164.7 million, of which 163.2 million were in developing countries (with 1.1 million deaths) and 1.5 million in industrialized countries. A total of 69% of all episodes and 61% of all deaths attributable to shigellosis involved children under 5 years of age. The median percentages of isolates of S. flexneri, S. sonnei, S. boydii, and S. dysenteriae were, respectively, 60%, 15%, 6%, and 6% (30% of S. dysenteriae cases were type 1) in developing countries; and 16%, 77%, 2%, and 1% in industrialized countries. In developing countries, the predominant serotype of S. flexneri is 2a, followed by 1b, 3a, 4a, and 6. In industrialized countries, most isolates are S. flexneri 2a or other unspecified type 2 strains. Shigellosis, which continues to have an important global impact, cannot be adequately controlled with the existing prevention and treatment measures. Innovative strategies, including development of vaccines against the most common serotypes, could provide substantial benefits.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                25 September 2017
                September 2017
                : 13
                : 9
                : e1007014
                Affiliations
                [001]Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
                Swiss Federal Institute of Technology Lausanne (EPFL), SWITZERLAND
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-6967-5968
                http://orcid.org/0000-0001-8366-3245
                Article
                PGENETICS-D-17-01499
                10.1371/journal.pgen.1007014
                5629016
                28945748
                4fc58fba-bb05-4a1f-ae09-38aacd0edade
                © 2017 Pilla et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 July 2017
                : 8 September 2017
                Page count
                Figures: 7, Tables: 0, Pages: 19
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100004440, Wellcome Trust;
                Award ID: WT102908MA
                Award Recipient :
                The work was supported by grants for the Wellcome Trust (awarded to CMT, 102908MA) and an MRC and EP Abraham DPhil studentship (awarded to GP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Bacteria
                Shigella
                Shigella Flexneri
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Shigella
                Shigella Flexneri
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Shigella
                Shigella Flexneri
                Biology and Life Sciences
                Organisms
                Bacteria
                Shigella
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Shigella
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Shigella
                Biology and Life Sciences
                Microbiology
                Bacteriology
                Bacterial Physiology
                Secretion Systems
                Biology and Life Sciences
                Microbiology
                Microbial Physiology
                Bacterial Physiology
                Secretion Systems
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Virulence Factors
                Secretion Systems
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Sequence Alignment
                Biology and Life Sciences
                Genetics
                Gene Expression
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Research and analysis methods
                Database and informatics methods
                Bioinformatics
                Sequence analysis
                DNA sequence analysis
                Custom metadata
                vor-update-to-uncorrected-proof
                2017-10-05
                All relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article