22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pseudomonas aeruginosa PilSR Two-Component System Regulates Both Twitching and Swimming Motilities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Motility is an important virulence trait for many bacterial pathogens, allowing them to position themselves in appropriate locations at appropriate times. The motility structures type IV pili and flagella are also involved in sensing surface contact, which modulates pathogenicity. In Pseudomonas aeruginosa, the PilS-PilR two-component system (TCS) regulates expression of the type IV pilus (T4P) major subunit PilA, while biosynthesis of the single polar flagellum is regulated by a hierarchical system that includes the FleSR TCS. Previous studies of Geobacter sulfurreducens and Dichelobacter nodosus implicated PilR in regulation of non-T4P-related genes, including some involved in flagellar biosynthesis. Here we used transcriptome sequencing (RNA-seq) analysis to identify genes in addition to pilA with changes in expression in the absence of pilR. Among the genes identified were 10 genes whose transcription increased in the pilA mutant but decreased in the pilR mutant, despite both mutants lacking T4P and pilus-related phenotypes. The products of these inversely dysregulated genes, many of which were hypothetical, may be important for virulence and surface-associated behaviors, as mutants had altered swarming motility, biofilm formation, type VI secretion system expression, and pathogenicity in a nematode model. Further, the PilSR TCS positively regulated transcription of fleSR, and thus many genes in the FleSR regulon. As a result, pilSR deletion mutants had defects in swimming motility that were independent of the loss of PilA. Together, these data suggest that in addition to controlling T4P expression, PilSR could have a broader role in the regulation of P. aeruginosa motility and surface sensing behaviors.

          IMPORTANCE

          Surface appendages such as type IV pili and flagella are important for establishing surface attachment and infection in a host in response to appropriate cues. The PilSR regulatory system that controls type IV pilus expression in Pseudomonas aeruginosa has an established role in expression of the major pilin PilA. Here we provide evidence supporting a new role for PilSR in regulating flagellum-dependent swimming motility in addition to pilus-dependent twitching motility. Further, even though both pilA and pilR mutants lack PilA and pili, we identified sets of genes downregulated in the pilR mutant and upregulated in a pilA mutant as well as genes downregulated only in a pilR mutant, independent of pilus expression. This finding suggests that change in the inner membrane levels of PilA is only one of the cues to which PilR responds to modulate gene expression. Identification of PilR as a regulator of multiple motility pathways may make it an interesting therapeutic target for antivirulence compounds.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database

          The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.

            The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective (sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.

              Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7, a transposon compatible with transposon-site hybridization and based on mariner. The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                24 July 2018
                Jul-Aug 2018
                : 9
                : 4
                : e01310-18
                Affiliations
                [a ]Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
                [b ]Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
                University of Washington
                Author notes
                Address correspondence to Lori L. Burrows, burrowl@ 123456mcmaster.ca .

                This article is a direct contribution from a Fellow of the American Academy of Microbiology. Solicited external reviewers: Daniel Wozniak, Ohio State University; Magdalene So, University of Arizona.

                Author information
                https://orcid.org/0000-0003-0838-5040
                Article
                mBio01310-18
                10.1128/mBio.01310-18
                6058289
                30042200
                4ff935ce-a9a0-4f6e-af89-c150dfb21b9b
                Copyright © 2018 Kilmury and Burrows.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 14 June 2018
                : 26 June 2018
                Page count
                supplementary-material: 6, Figures: 4, Tables: 3, Equations: 0, References: 55, Pages: 13, Words: 8627
                Funding
                Funded by: Canadian Institutes of Health;
                Award ID: MOP 86639
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                July/August 2018

                Life sciences
                cell surface,cystic fibrosis,flagellar gene regulation,two-component regulatory systems,type iv pili

                Comments

                Comment on this article