2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Homotransfer FRET Reporters for Live Cell Imaging

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Förster resonance energy transfer (FRET) between fluorophores of the same species was recognized in the early to mid-1900s, well before modern heterotransfer applications. Recently, homotransfer FRET principles have re-emerged in biosensors that incorporate genetically encoded fluorescent proteins. Homotransfer offers distinct advantages over the standard heterotransfer FRET method, some of which are related to the use of fluorescence polarization microscopy to quantify FRET between two fluorophores of identical color. These include enhanced signal-to-noise, greater compatibility with other optical sensors and modulators, and new design strategies based upon the clustering or dimerization of singly-labeled sensors. Here, we discuss the theoretical basis for measuring homotransfer using polarization microscopy, procedures for data collection and processing, and we review the existing genetically-encoded homotransfer biosensors.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Creating new fluorescent probes for cell biology.

          Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            EBImage—an R package for image processing with applications to cellular phenotypes

            Summary: EBImage provides general purpose functionality for reading, writing, processing and analysis of images. Furthermore, in the context of microscopy-based cellular assays, EBImage offers tools to segment cells and extract quantitative cellular descriptors. This allows the automation of such tasks using the R programming language and use of existing tools in the R environment for signal processing, statistical modeling, machine learning and data visualization. Availability: EBImage is free and open source, released under the LGPL license and available from the Bioconductor project (http://www.bioconductor.org/packages/release/bioc/html/EBImage.html). Contact: gregoire.pau@ebi.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics

              Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.
                Bookmark

                Author and article information

                Journal
                Biosensors (Basel)
                Biosensors (Basel)
                biosensors
                Biosensors
                MDPI
                2079-6374
                11 October 2018
                December 2018
                : 8
                : 4
                : 89
                Affiliations
                Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA; nicole.snell@ 123456umaryland.edu (N.E.S.); vishnu-prak.rao@ 123456som.umaryland.edu (V.P.R.); kendra.seckinger@ 123456gmail.com (K.M.S.); jliang@ 123456som.umaryland.edu (J.L.); jleser@ 123456umaryland.edu (J.L.); a.mancini@ 123456umaryland.edu (A.E.M.)
                Author notes
                [* ]Correspondence: mrizzo@ 123456som.umaryland.edu ; Tel.: +1-410-706-2421
                Author information
                https://orcid.org/0000-0002-3037-0366
                https://orcid.org/0000-0001-6528-7768
                Article
                biosensors-08-00089
                10.3390/bios8040089
                6316388
                30314323
                51a396d1-0f87-40b3-9449-22effd7c6c6c
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 September 2018
                : 10 October 2018
                Categories
                Review

                fret,anisotropy,gfp,fluorescent protein,biosensor,homotransfer
                fret, anisotropy, gfp, fluorescent protein, biosensor, homotransfer

                Comments

                Comment on this article