4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Prevalence of Colistin Resistant Strains and Antibiotic Resistance Gene Profiles in Funan River, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthropogenic activities near urban rivers may have significantly increased the acquisition and dissemination of antibiotic resistance. In this study, we investigated the prevalence of colistin resistant strains in the Funan River in Chengdu, China. A total of 18 mcr-1-positive isolates (17 Escherichia coli and 1 Enterobacter cloacae) and 6 mcr-3-positive isolates (2 Aeromonas veronii and 4 Aeromonas hydrophila) were detected, while mcr-2, mcr-4 and mcr-5 genes were not detected in any isolates. To further explore the overall antibiotic resistance in the Funan River, water samples were assayed for the presence of 15 antibiotic resistance genes (ARGs) and class 1 integrons gene ( intI1). Nine genes, sul1, sul2, intI1, aac(6′)-Ib-cr, bla CTX-M, tetM, ermB, qnrS, and aph(3′)-IIIa were found at high frequencies (70–100%) of the water samples. It is worth noting that mcr-1, bla KPC, bla NDM and vanA genes were also found in water samples, the genes that have been rarely reported in natural river systems. The absolute abundance of selected antibiotic resistance genes [sul1, aac(6′)-Ib-cr, ermB, bla CTX-M, mcr-1 , and tetM] ranged from 0 to 6.0 (log 10 GC/mL) in water samples, as determined by quantitative polymerase chain reaction (qPCR). The sul1, aac(6′)-Ib-cr, and ermB genes exhibited the highest absolute abundances, with 5.8, 5.8, and 6.0 log 10 GC/mL, respectively. The absolute abundances of six antibiotic resistance genes were highest near a residential sewage outlet. The findings indicated that the discharge of resident sewage might contribute to the dissemination of antibiotic resistant genes in this urban river. The observed high levels of these genes reflect the serious degree of antibiotic resistant pollution in the Funan River, which might present a threat to public health.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Tackling antibiotic resistance: the environmental framework.

          Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibiotic resistance genes as emerging contaminants: studies in northern Colorado.

            This study explores antibiotic resistance genes (ARGs) as emerging environmental contaminants. The purpose of this study was to investigate the occurrence of ARGs in various environmental compartments in northern Colorado, including Cache La Poudre (Poudre) River sediments, irrigation ditches, dairy lagoons, and the effluents of wastewater recycling and drinking water treatment plants. Additionally, ARG concentrations in the Poudre River sediments were analyzed at three time points at five sites with varying levels of urban/agricultural impact and compared with two previously published time points. It was expected that ARG concentrations would be significantly higher in environments directly impacted by urban/agricultural activity than in pristine and lesser-impacted environments. Polymerase chain reaction (PCR) detection assays were applied to detect the presence/absence of several tetracycline and sulfonamide ARGs. Quantitative real-time PCR was used to further quantify two tetracycline ARGs (tet(W) and tet(O)) and two sulfonamide ARGs (sul(I) and sul(II)). The following trend was observed with respect to ARG concentrations (normalized to eubacterial 16S rRNA genes): dairy lagoon water > irrigation ditch water > urban/agriculturally impacted river sediments (p < 0.0001), except for sul(II), which was absent in ditch water. It was noted that tet(W) and tet(O) were also present in treated drinking water and recycled wastewater, suggesting that these are potential pathways for the spread of ARGs to and from humans. On the basis of this study, there is a need for environmental scientists and engineers to help address the issue of the spread of ARGs in the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays.

              Few techniques are currently available for quantifying specific prokaryotic taxa in environmental samples. Quantification of specific genotypes has relied mainly on oligonucleotide hybridization to extracted rRNA or intact rRNA in whole cells. However, low abundance and cellular rRNA content limit the application of these techniques in aquatic environments. In this study, we applied a newly developed quantitative PCR assay (5'-nuclease assay, also known as TaqMan) to quantify specific small-subunit (SSU) rRNA genes (rDNAs) from uncultivated planktonic prokaryotes in Monterey Bay. Primer and probe combinations for quantification of SSU rDNAs at the domain and group levels were developed and tested for specificity and quantitative reliability. We examined the spatial and temporal variations of SSU rDNAs from Synechococcus plus Prochlorococcus and marine Archaea and compared the results of the quantitative PCR assays to those obtained by alternative methods. The 5'-nuclease assays reliably quantified rDNAs over at least 4 orders of magnitude and accurately measured the proportions of genes in artificial mixtures. The spatial and temporal distributions of planktonic microbial groups measured by the 5'-nuclease assays were similar to the distributions estimated by quantitative oligonucleotide probe hybridization, whole-cell hybridization assays, and flow cytometry.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                18 December 2018
                2018
                : 9
                : 3094
                Affiliations
                Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu, China
                Author notes

                Edited by: Gilberto Igrejas, Universidade de Trás-os-Montes e Alto Douro, Portugal

                Reviewed by: Magdalena Nüesch-Inderbinen, University of Zurich, Switzerland; Roger Stephan, University of Zurich, Switzerland

                *Correspondence: Anyun Zhang, zhanganyun@ 123456scu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.03094
                6305280
                30619173
                53c59370-9451-4d8f-b747-77e16bf99f57
                Copyright © 2018 Tuo, Yang, Tao, Liu, Li, Xie, Li, Gu, Kong, Xiang, Lei, Wang and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 August 2018
                : 29 November 2018
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 65, Pages: 10, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                colistin,antibiotic resistance,mcr-1,mcr-3,urban river,quantitative polymerase chain reaction

                Comments

                Comment on this article