18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overview on Clinical Relevance of Intra-Tumor Heterogeneity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          The genomic landscapes of human breast and colorectal cancers.

          Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting EZH2 in cancer.

            Recent genomic studies have resulted in an emerging understanding of the role of chromatin regulators in the development of cancer. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex, is recurrently mutated in several forms of cancer and is highly expressed in numerous others. Notably, both gain-of-function and loss-of-function mutations occur in cancers but are associated with distinct cancer types. Here we review the spectrum of EZH2-associated mutations, discuss the mechanisms underlying EZH2 function, and synthesize a unifying perspective that the promotion of cancer arises from disruption of the role of EZH2 as a master regulator of transcription. We further discuss EZH2 inhibitors that are now showing early signs of promise in clinical trials and also additional strategies to combat roles of EZH2 in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating tumor cells: liquid biopsy of cancer.

              The detection and molecular characterization of circulating tumor cells (CTCs) are one of the most active areas of translational cancer research, with >400 clinical studies having included CTCs as a biomarker. The aims of research on CTCs include (a) estimation of the risk for metastatic relapse or metastatic progression (prognostic information), (b) stratification and real-time monitoring of therapies, (c) identification of therapeutic targets and resistance mechanisms, and (d) understanding metastasis development in cancer patients. This review focuses on the technologies used for the enrichment and detection of CTCs. We outline and discuss the current technologies that are based on exploiting the physical and biological properties of CTCs. A number of innovative technologies to improve methods for CTC detection have recently been developed, including CTC microchips, filtration devices, quantitative reverse-transcription PCR assays, and automated microscopy systems. Molecular-characterization studies have indicated, however, that CTCs are very heterogeneous, a finding that underscores the need for multiplex approaches to capture all of the relevant CTC subsets. We therefore emphasize the current challenges of increasing the yield and detection of CTCs that have undergone an epithelial-mesenchymal transition. Increasing assay analytical sensitivity may lead, however, to a decrease in analytical specificity (e.g., through the detection of circulating normal epithelial cells). A considerable number of promising CTC-detection techniques have been developed in recent years. The analytical specificity and clinical utility of these methods must be demonstrated in large prospective multicenter studies to reach the high level of evidence required for their introduction into clinical practice. © 2012 American Association for Clinical Chemistry
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                06 April 2018
                2018
                : 5
                : 85
                Affiliations
                DSM, Department of Medical Sciences, University of Trieste , Trieste, Italy
                Author notes

                Edited by: Stefano La Rosa, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland

                Reviewed by: Kenji Notohara, Kurashiki Central Hospital, Japan; Maria Grazia Tibiletti, Ospedale di Circolo e Fondazione Macchi, Italy

                *Correspondence: Giorgio Stanta, stanta@ 123456impactsnetwork.eu

                Specialty section: This article was submitted to Pathology, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2018.00085
                5897590
                29682505
                545f7158-8ab8-4aaf-95ca-e9ad1cb225fb
                Copyright © 2018 Stanta and Bonin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 January 2018
                : 19 March 2018
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 119, Pages: 10, Words: 8788
                Categories
                Medicine
                Review

                intra-tumor heterogeneity,morphohistological intra-tumor heterogeneity,clonal intra-tumor heterogeneity,functional phenotypic plasticity,stochastic plasticity,cancer spreading,genomic instability

                Comments

                Comment on this article