Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute kidney injury (AKI) has a critical role in the development of chronic kidney disease (CKD). Building on our previous findings, we explored the role of miR-382 in facilitating the transition of AKI to CKD using the Aristolochic acid (AA) nephropathy model, which was induced by intraperitoneal injection of aristolochic acid I salt (10 or 20 mg/kg). The effects of genetic depletion, pharmacologic inhibition, or overexpression of miR-382 on the PTEN/AKT signaling pathway were examined in vivo and in vitro. Changes in renal pathology and renal epithelial polarity were evaluated. A luciferase reporter assay was performed to investigate the reciprocal suppression relationship between miR-382 and PTEN. Renal fibrosis developed 14 d after AA exposure in a dose- and time-dependent manner. Renal abundance of miR-382 was upregulated following AA treatment, while genetic depletion or pharmacological inhibition of miR-382 partially reversed renal tubulointerstitial fibrosis. Expression of PTEN, a target of miR-382, was downregulated and subsequently its downstream AKT signaling pathway was activated during AKI to CKD transition induced by AA. Inhibition of PTEN in vitro resulted in the acquisition of the EMT phenotypes. Furthermore, upregulation of miR-382 in renal epithelial cells was partially mediated by the activation of NF-kB signaling, with a substantial elevation of proinflammatory cytokines. An in vivo study revealed that either miR-382 knockdown or miR-382 knockout was pivotal for inflammatory suppression, while an in vitro experiment confirmed that upregulation of miR-382 in cultured MTEC cells under AA exposure was remarkably reversed by NF-kB siRNA. These data indicated a novel role for the NF-κB/miR-382/PTEN/AKT axis in the pathogenesis of tubulointerstitial fibrosis following AA-induced acute renal tubular epithelial injury. Targeting miR-382 may lead to a potential novel therapeutic approach for retarding the AKT to CKD transition.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Renal tubule injury: a driving force toward chronic kidney disease.

          Renal tubules are the major component of the kidney and are vulnerable to a variety of injuries including hypoxia, proteinuria, toxins, metabolic disorders, and senescence. It has long been believed that tubules are the victim of injury. In this review, we shift this concept to renal tubules as a driving force in the progression of kidney diseases. In response to injury, tubular epithelial cells undergo changes and function as inflammatory and fibrogenic cells, with the consequent production of various bioactive molecules that drive interstitial inflammation and fibrosis. Innate immune-sensing receptors on the tubular epithelium also aggravate immune responses. Necroinflammation, an autoamplification loop between tubular cell death and interstitial inflammation, leads to the exacerbation of renal injury. Furthermore, tubular cells also play an active role in progressive renal injury via emerging mechanisms associated with a partial epithelial-mesenchymal transition, cell-cycle arrest at both G1/S and G2/M check points, and metabolic disorder. Thus, a better understanding the mechanisms by which tubular injury drives inflammation and fibrosis is necessary for the development of therapeutics to halt the progression of chronic kidney disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury.

            Acute kidney injury increases mortality risk among those with established chronic kidney disease. In this study we used a propensity score-matched cohort method to retrospectively evaluate the risks of death and de novo chronic kidney disease after reversible, hospital-associated acute kidney injury among patients with normal pre-hospitalization kidney function. Of 30,207 discharged patients alive at 90 days, 1610 with reversible acute kidney injury that resolved within the 90 days were successfully matched across multiple parameters with 3652 control patients who had not experienced acute kidney injury. Median follow-up was 3.3 and 3.4 years (injured and control groups, respectively). In Cox proportional hazard models, the risk of death associated with reversible acute kidney injury was significant (hazard ratio 1.50); however, adjustment for the development of chronic kidney injury during follow-up attenuated this risk (hazard ratio 1.18). Reversible acute kidney injury was associated with a significant risk of de novo chronic kidney disease (hazard ratio 1.91). Thus, a resolved episode of hospital-associated acute kidney injury has important implications for the longitudinal surveillance of patients without preexisting, clinically evident kidney disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets

              Chronic kidney disease (CKD) is a major public health issue. At the histological level, renal fibrosis is the final common pathway of progressive kidney disease irrespective of the initial injury. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Some of the inflammatory signaling molecules involved in CKD include: monocyte chemoattractant protein-1 (MCP-1), bradykinin B 1 receptor (B 1 R), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNFα), transforming growth factor β (TGF-β), and platelet-derived growth factor (PDGF). Multiple antifibrotic factors, such as interleukin-10 (IL-10), interferon-γ (IFN-γ), bone morphogenetic protein-7 (BMP-7), hepatocyte growth factor (HGF) are also downregulated in CKD. Therefore, restoration of the proper balance between pro- and antifibrotic signaling pathways could serve as a guiding principle for the design of new antifibrotic strategies that simultaneously target many pathways. The purpose of this review is to summarize the existing body of knowledge regarding activation of cytokine pathways and infiltration of inflammatory cells as a starting point for developing novel antifibrotic therapies to prevent progression of CKD.
                Bookmark

                Author and article information

                Contributors
                fang.yi@zs-hospital.sh.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                14 August 2020
                14 August 2020
                August 2020
                : 11
                : 8
                : 620
                Affiliations
                [1 ]GRID grid.413087.9, ISNI 0000 0004 1755 3939, Department of Nephrology, , Zhongshan Hospital, Fudan University, ; Shanghai, China
                [2 ]Shanghai Medical Center of Kidney, Shanghai, China
                [3 ]Shanghai Institute of Kidney and Dialysis, Shanghai, China
                [4 ]Key laboratory of Kidney and Blood Purification, Shanghai, China
                Author information
                http://orcid.org/0000-0002-1412-4333
                Article
                2876
                10.1038/s41419-020-02876-1
                7429500
                32796834
                5606b301-93c3-4cb8-b831-3faac6ca8efc
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 April 2020
                : 3 August 2020
                : 4 August 2020
                Funding
                Funded by: The Science and Technology Commission of Shanghai Municipality, 14DZ2260200; The National Natural Science Foundation of China,81430015; The National Natural Science Foundation of China,81200557
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Cell biology
                necroptosis,cell death and immune response,transforming growth factor beta
                Cell biology
                necroptosis, cell death and immune response, transforming growth factor beta

                Comments

                Comment on this article