53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Verifying the fully “Laplacianised” posterior Naïve Bayesian approach and more

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In a recent paper, Mussa, Mitchell and Glen (MMG) have mathematically demonstrated that the “Laplacian Corrected Modified Naïve Bayes” (LCMNB) algorithm can be viewed as a variant of the so-called Standard Naïve Bayes (SNB) scheme, whereby the role played by absence of compound features in classifying/assigning the compound to its appropriate class is ignored. MMG have also proffered guidelines regarding the conditions under which this omission may hold. Utilising three data sets, the present paper examines the validity of these guidelines in practice. The paper also extends MMG’s work and introduces a new version of the SNB classifier: “Tapered Naïve Bayes” (TNB). TNB does not discard the role of absence of a feature out of hand, nor does it fully consider its role. Hence, TNB encapsulates both SNB and LCMNB.

          Results

          LCMNB, SNB and TNB performed differently on classifying 4,658, 5,031 and 1,149 ligands (all chosen from the ChEMBL Database) distributed over 31 enzymes, 23 membrane receptors, and one ion-channel, four transporters and one transcription factor as their target proteins. When the number of features utilised was equal to or smaller than the “optimal” number of features for a given data set, SNB classifiers systematically gave better classification results than those yielded by LCMNB classifiers. The opposite was true when the number of features employed was markedly larger than the “optimal” number of features for this data set. Nonetheless, these LCMNB performances were worse than the classification performance achieved by SNB when the “optimal” number of features for the data set was utilised. TNB classifiers systematically outperformed both SNB and LCMNB classifiers.

          Conclusions

          The classification results obtained in this study concur with the mathematical based guidelines given in MMG’s paper—that is, ignoring the role of absence of a feature out of hand does not necessarily improve classification performance of the SNB approach; if anything, it could make the performance of the SNB method worse. The results obtained also lend support to the rationale, on which the TNB algorithm rests: handled judiciously, taking into account absence of features can enhance (not impair) the discriminatory classification power of the SNB approach.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Using mutual information for selecting features in supervised neural net learning.

          R Battiti (1994)
          This paper investigates the application of the mutual information criterion to evaluate a set of candidate features and to select an informative subset to be used as input data for a neural network classifier. Because the mutual information measures arbitrary dependencies between random variables, it is suitable for assessing the "information content" of features in complex classification tasks, where methods bases on linear relations (like the correlation) are prone to mistakes. The fact that the mutual information is independent of the coordinates chosen permits a robust estimation. Nonetheless, the use of the mutual information for tasks characterized by high input dimensionality requires suitable approximations because of the prohibitive demands on computation and samples. An algorithm is proposed that is based on a "greedy" selection of the features and that takes both the mutual information with respect to the output class and with respect to the already-selected features into account. Finally the results of a series of experiments are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            New mini- zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily

            Background The Acel_2062 protein from Acidothermus cellulolyticus is a protein of unknown function. Initial sequence analysis predicted that it was a metallopeptidase from the presence of a motif conserved amongst the Asp-zincins, which are peptidases that contain a single, catalytic zinc ion ligated by the histidines and aspartic acid within the motif (HEXXHXXGXXD). The Acel_2062 protein was chosen by the Joint Center for Structural Genomics for crystal structure determination to explore novel protein sequence space and structure-based function annotation. Results The crystal structure confirmed that the Acel_2062 protein consisted of a single, zincin-like metallopeptidase-like domain. The Met-turn, a structural feature thought to be important for a Met-zincin because it stabilizes the active site, is absent, and its stabilizing role may have been conferred to the C-terminal Tyr113. In our crystallographic model there are two molecules in the asymmetric unit and from size-exclusion chromatography, the protein dimerizes in solution. A water molecule is present in the putative zinc-binding site in one monomer, which is replaced by one of two observed conformations of His95 in the other. Conclusions The Acel_2062 protein is structurally related to the zincins. It contains the minimum structural features of a member of this protein superfamily, and can be described as a “mini- zincin”. There is a striking parallel with the structure of a mini-Glu-zincin, which represents the minimum structure of a Glu-zincin (a metallopeptidase in which the third zinc ligand is a glutamic acid). Rather than being an ancestral state, phylogenetic analysis suggests that the mini-zincins are derived from larger proteins.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Small sample size effects in statistical pattern recognition: recommendations for practitioners

                Bookmark

                Author and article information

                Contributors
                mussax021@gmail.com
                marcus@ebi.ac.uk
                jbom@st-andrews.ac.uk
                rcg28@cam.ac.uk
                Journal
                J Cheminform
                J Cheminform
                Journal of Cheminformatics
                Springer International Publishing (Cham )
                1758-2946
                12 June 2015
                12 June 2015
                2015
                : 7
                : 27
                Affiliations
                [ ]Department of Chemistry, Centre for Molecular Informatics, Lensfield Road, Cambridge, England CB2 1EW UK
                [ ]European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, England CB10 1SD UK
                [ ]EaStCHEM School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST UK
                Article
                75
                10.1186/s13321-015-0075-5
                4464057
                56d50ee3-740a-4a45-8622-84c136efb4e2
                © Mussa et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 January 2015
                : 12 May 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Chemoinformatics
                classification,naïve bayes,tapering,features
                Chemoinformatics
                classification, naïve bayes, tapering, features

                Comments

                Comment on this article